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A typical assumption used in most fishery stock assessments is that natural mortality (M) is constant across time and age. However, M is rarely constant
in reality as a result of the combined impacts of exploitation history, predation, environmental factors, and physiological trade-offs. Misspecification or
poor estimation of M can lead to bias in quantities estimated using stock assessment methods, potentially resulting in biased estimates of fishery ref-
erence points and catch limits, with the magnitude of bias being influenced by life history and trends in fishing mortality. Monte Carlo simulations were
used to evaluate the ability of statistical age-structured population models to estimate spawning-stock biomass, fishing mortality, and total allowable
catch when the true M was age-invariant, but time-varying. Configurations of the stock assessment method, implemented in Stock Synthesis, included
a single age- and time-invariant M parameter, specified at one of the three levels (high, medium, and low) or an estimated M. The min–max (i.e. most
robust) approach to specifying M when it is thought to vary across time was to estimate M. The least robust approach for most scenarios examined was
to fix M at a high value, suggesting that the consequences of misspecifying M are asymmetric.
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Introduction
Regulations for many commercial fisheries are based on the results
of stock assessments. In particular, the current status of the stock,
spawning-stock biomass (SSB), and fishing mortality (F ) are
often estimated using age- and/or size-structured fishery stock
assessments fit to available data. Stock assessment methods
often assume certain population characteristics [e.g. natural mor-
tality (M ) and growth] and fishery characteristics [e.g. selectivity
and catchability (q)] are time-invariant. However, there is

overwhelming evidence that many ecological processes vary sub-
stantially with time for various reasons, such as fluctuations in
temperature (McCarty, 2001; Walther et al., 2002; Genner et al.,
2004), regime shifts (Holbrook et al., 1997; Vert-pre et al.,
2013), overfishing (Pondella and Allen, 2008), changes in
fishing behaviour (Hilborn and Walters, 1992), physiological pro-
cesses (Ziegler et al., 2003), changes in the abundance or area
inhabited by the stock (Peterman and Steer, 1981; Winters and
Wheeler, 1985; Harley et al., 2001), and changes in predator–
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prey dynamics (Fu et al., 2001; Tyrrell et al., 2011; Neira and
Arancibia, 2013).

M is related to an individual’s age and size, and can be highly vari-
able over time (Zheng et al., 1995; Chu et al., 2008; McCoy and
Gillooly, 2008). Younger fish often experience higher predation
rates (Lorenzen, 1996), older fish may undergo senescence or cumu-
lative reproductive stress (Mangel, 2003; Moustahfid et al., 2009),
predator–prey dynamics can change over time impacting average
values of M (Walters and Maguire, 1996; Tyrrell et al., 2011; Neira
and Arancibia, 2013), and changing ocean conditions or intense
fishing pressure may lead to life history adaptations (Swain, 2011;
Jørgensen and Holt, 2013). However, most population models for
fisheries management assume M is constant for all ages and across
time.

M is an influential parameter in population models, potentially
because its magnitude relates directly to stock productivity (Pauly,
1980; Lee et al., 2011; Kenchington, 2013). Recommendations for
the optimal F will often scale with M, and are therefore highly de-
pendent on the chosen or estimated value of M (Andrews and
Mangel, 2012). Thus, misspecification in M may lead to over- or
underestimates of critical management quantities, such as unfished
biomass (B0), depletion (current biomass relative to B0), maxi-
mum sustainable yield (MSY), and stock–recruitment relationships
(Thompson, 1994; Punt and Walker, 1998; Clark, 1999). M is often
confounded with q, F, and recruitment (Schnute and Richards,
1995), and the estimation of even a single value for M is difficult
(Pope, 1972; Mertz and Myers, 1997), except perhaps when data
are available from the initial years of the fishery (Magnusson and
Hilborn, 2007). While it is difficult to estimate a single constant
M within a stock assessment, several methods exist to estimate M ex-
ternally to an assessment model. Typically, these methods are based
on life history invariants and require extensive prior biological
knowledge (Kenchington, 2013). Furthermore, these methods can
be imprecise, biased, and rarely provide estimates of uncertainty
(Schnute and Richards, 1995; Maunder and Wong, 2011).
Currently, no default approach exists for analysts confronted with
multiple external estimates of M. Past studies have used a variety
of techniques to incorporate such estimates into stock assessments:
calculate an average (Brodziak et al., 2011), fit the assessment model
for each estimate (Zhang and Megrey, 2006), develop Bayesian
priors based on the estimates (Jiao et al., 2012), and use bootstrap
techniques to determine the most robust estimate (Methot and
Wetzel, 2013). A few studies estimated M successfully within an as-
sessment model, but this approach required a considerable amount
of data, and circumstances where M can be estimated within the
model remain unclear and controversial (Lee et al., 2011; Francis,
2012).

Several methods exist to account for time-varying parameters in
stock assessment models (Fournier, 1983; Shepherd and Pope, 2002;
Thorson, 2011), although no single method provides unbiased esti-
mates of terminal biomass and F in all situations (Radomski et al.,
2005; Wilberg and Bence, 2006; Linton and Bence, 2011).
Simulations show that not accounting for time-varying M when it
is present, or incorrectly specifying time-varying M when it is in
fact stationary will lead to biases in SSB and other parameters (Fu
and Quinn, 2000; Punt et al., 2013). Furthermore, ignoring age-
specific M often leads to smaller biases than ignoring time-varying
M, suggesting that it is more important to account for time-varying
M (Deroba and Schueller, 2013). The lack of a reliable benefit from
adding time-varying complexity to an assessment model has led
most analysts to rely on the status quo of ignoring or averaging

time-varying aspects of parameters (Fox, 1975; Clark, 1999;
Maunder and Wong, 2011). Further study is needed to understand
the potential impacts of ignoring time-varying effects when they are
suspected to occur, but are unknown.

Simulation modelling was used here to explore the implications
of various ways of handling M in stock assessments and to develop
guidelines for when it is unclear if or how M varies over time. The
performance of several assessment model configurations was evalu-
ated for scenarios where the true value of M was either constant or
changed over time. The ability of each statistical age-structured
population model configuration to estimate SSB and F, as well as
implications for key management quantities [e.g. the total allowable
catch (TAC) for the next year] were compared. The results were used
to identify the stock assessment configurations that were most
robust to uncertainty about the value and characteristics of M.

Material and methods
Overview of simulation framework
Monte Carlo simulations were used to evaluate the performance of
four model configurations (estimation methods; EMs) across a
range of life history types, historical time-trajectories of F, and time-
trajectories in M. Each combination of simulated truth (operating
model; OM) and EM, hereinafter referred to as a scenario, consisted
of three steps: (i) simulate a 100-year population dynamics time-
series with recruitment process error, (ii) apply the EM to data
sampled from the OM with observation error, and (iii) compare
estimates of relevant quantities with their “true” values as defined
by the OM. These steps were repeated 100 times with different pro-
cess errors (recruitment deviations) and observation errors for each
scenario. Larger sample sizes (e.g. 500) produced similar results,
thus a sample size of 100 was chosen to keep computational
time requirements within reasonable limits (Supplementary
Figure S1).

Analyses were conducted using the ss3sim simulation frame-
work (Anderson et al., 2014a, b), an open-source software
package implemented in the R statistical software environment (R
Core Team, 2013). The integrated stock assessment framework
Stock Synthesis 3 (SS3, version V3.24O; Methot and Wetzel,
2013), a statistical age-structured population modelling framework
frequently used to conduct assessments in many parts of the world
(see Appendix A of Methot and Wetzel, 2013), was used as both the
OM and EM.

The operating models
Three configurations of the OM were used to represent three life his-
tories: cod-like, flatfish-like, and sardine-like, i.e. life histories that
are slow-growing and long-lived; fast-growing and long-lived; and
fast-growing and short-lived, respectively. The life history types
differed in their biological parameters (e.g. growth, M, age-at-
maturity, etc.; see Table 1 for details), based on the following stocks:
North Sea cod (Gadus morhua; R. Methot, NMFS, NOAA, pers.
comm.), yellowtail flounder (Limanda ferruginea; R. Methot, NMFS,
NOAA, pers. comm.), and Pacific sardine (Sardinops sagax caeruleus;
Hill et al., 2012). The Ricker stock–recruit function used by Hill et al.
(2012) was altered to a Beverton–Holt stock–recruit function with a
steepness specific to sardine (Myers et al., 1999) to enable compari-
sons among the three life history types. All configurations of the
OM were age-structured, with sexes combined.

Seven trends in M (Figure 1a) were investigated, where M either
increased or decreased in a knife-edged manner to a new value in a
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single year (“block”). Block changes were generated to represent
abrupt changes due to predator–prey dynamics, such as for
Chilean hake (Merluccius gayi gayi) where large decreases in hake
are attributed to sudden influxes of jumbo squid (Dosidicus gigas;
Arancibia and Neira, 2008) or abrupt changes due to sudden
regime shifts, such as for several pandalid species in the Gulf of
Alaska where abrupt increases in temperature led to large declines
in abundance (Anderson, 2000).

Time-trends in M were defined relative to M in year 0 (Mhistorical),
and M was age-invariant always. The changes in M were scaled

relative to their impacts on MSY rather than in absolute terms to
facilitate comparisons across life histories. The value to which M
changed, M*, corresponded to an MSY that was either 130%
(Mlow) or 70% (Mhigh) of the MSY corresponding to Mhistorical.
M increased or decreased abruptly in one of the three years (year
50, 75, or 90) to M* (Figure 1a).

Patterns in F were chosen to determine whether they changed the
relative performance of models when M is time-varying, although
the general influence of trajectories of F on the performance of
stock assessment models has been well studied (Bence et al., 1993,

Table 1. Life history, fishery, and modelling parameters used for each life history type (cod-like, flatfish-like, and sardine-like).

Parameter (units) Symbol
Value (cod,
flatfish, sardine) Estimated Lower bounds Upper bounds

Natural mortality (year21) M 0.2, 0.2, 0.4 At times 0.5 500
Reference age (year) a1 0.5, 0.5, 0.5 No – –
Maximum age (year) Amax 25, 25, 15 No – –
Mean length-at-age (cm) La La ¼ L1 + (Ll2L1)e2K(a2a1) – – –
Length at a1 (cm) L1 20, 12.7, 10 Always 0.5 1000
Length at Amax (cm) L1 132, 47.4, 25 Always 0.5 1000
Growth rate (year21) K 0.2, 0.35 0.4 Always 0.5 500
CV L1 (2) CV1 0.1, 0.2, 0.14 Always 0.5 500
CV L1 (2) CV1 0.1, 0.2, 0.05 Always 0.5 500
Length–weight scaling (kg cm2b) a 6.8e26, 1.0e25, 1.7e25 No – –
Allometric factor (2) b 3.1, 3, 2.9 No – –
Fraction mature (2) wl wl ¼ (1 + eV1 (L12V2))21 – – –
Maturity slope (cm21) V1 20.27, 20.42, 20.90 No – –
Length at 50% maturity (cm) V2 38.2, 28.9, 15.9 No – –
Log mean virgin recruitment (2) ln R0 18.7, 10.5, 16.0 Always 0.5 500
Steepness (2) h 0.65, 0.76, 0.59 No – –
Recruitment variability (2) sr 0.4, 0.7, 0.73 No – –
Mean fishery length-at-50% selectivity (cm) S1 38.2, 28.9, 15.9 Always 0.5 500
Fishery length selectivity slope (cm) S2 10.6, 7.0, 3.3 Always 0.5 500
Survey length-at-50% selectivity (cm) S3 30.5, 23.1, 12.7 Always 0.5 500
Survey length selectivity slope (cm) S4 10.6, 7.0, 3.3 Always 0.5 500
Log-catchability ln q 0, 0, 0 Always 220 +20
Survey observation error s.d. ss 0.2, 0.2, 0.2 No – –

Lower and upper bounds are reported as percentages, which are multiplied by the true value to determine the bounds used in the estimation model
for estimated parameters, except for catchability where the actual bounds were reported. M was only estimated in a subset of the EMs.

Figure 1. Natural mortality and fishing mortality trends used in the OM.

Time-varying natural mortality in fisheries stock assessment models 139

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/72/1/137/823490 by guest on 24 April 2024



Ono et al., 2015). For all scenarios, years 1 through 25 had zero
fishing and acted as a burn-in period. In subsequent years, fully
selected F varied among years in one of the three ways: a constant
F equal to the value that produced 0.95MSY on the left limb of the
production curve (“constant”); a linear increase to the F corre-
sponding to 0.95MSYon the right limb of the production curve (“in-
crease”); and a 60 year linear increase to the F corresponding to
0.95MSY (right limb), followed by a 14 year linear decrease to the
F corresponding to 0.95MSY (left limb; “contrast”; Figure 1b). For
all scenarios, F in year 100 was the deterministic FMSY calculated
using the true value of M from the last year of the OM.

Fishery selectivity was length-based, mimicked the length-based
maturity ogive, and was time-invariant for all life histories. It was
assumed to be asymptotic to simplify the analysis and maximize
the ability to estimate M, which is known to be difficult or impos-
sible when selectivity is dome-shaped (He et al., 2011; Lee et al.,
2011). For the survey, the length at which 50% of individuals were
selected was specified as 80% of the length at which 50% of indivi-
duals were selected for the fishery to ensure that the survey sampled
younger fish than were caught in the fishery.

Data generation
Catch was reported yearly without error from the start of the fishery
to year 99 (terminal year). Fishery length- and age-composition data
were generated every 10 years starting in year 25, every 5 years start-
ing in year 45, and annually starting in year 70. Sample sizes for both
the fishery length- and age-frequencies were 20 in years 25 and 35,
increased by 10 from 40 to 80 between the years of 45 and 65, and
were maintained at 100 beginning in year 70 to mimic an increasing
emphasis on the collection of composition data. Scientific surveys
occurred every other year starting in year 75, and provided an
index of abundance, length-frequencies based on 100 samples,
and age-frequencies based on 100 samples.

The survey composition data were generated using a multinom-
ial distribution. This distribution assumes homogeneous capture
probabilities across length or age bins and perfect mixing, which
is not realistic for actual fishery composition samples (Maunder,
2011). Consequently, the Dirichlet distribution was used to generate
fishery composition data with twice the standard deviation of the
multinomial (i.e. over-dispersed) to more accurately reflect the in-
formation contained in actual fishery data (Aanes and Pennington,
2003; Hulson et al., 2011).

Estimation methods
The EMs were based on the structure of the OM except in terms of
the estimation of M (see Table 1 for a list of estimated parameters).
The EM was configured with the correct effective sample size for
both the multinomial and Dirichlet samples (e.g. for year 70,
Neff ¼ 100 and 100/22, respectively), assuring the correct statistical
weight was given to the composition data (Hulson et al., 2012).
Bounds for all parameters were specified at extremely wide values,
so that the full effects of model misspecification could be realized
(Table 1). The following EMs were explored, leading to 252 scen-
arios (three life history types, three F trajectories, seven true
trends in M, and four EM configurations):

(i) assumed to be constant and equal to Mhistorical (“historical”);

(ii) assumed to be constant and equal to Mhigh (“high”);

(iii) assumed to be constant and equal to Mlow (“low”); and

(iv) a single M was estimated (“estimated”).

Sensitivity analyses
Simulations were also conducted for a series of fixed M values in the
EM to create profiles of M vs. performance metrics and further
evaluate the impact of misspecifying M. This sensitivity analysis
was conducted for two cod-like scenarios: one where the true M
was constant, as a reference case, and one where the true M under-
went a block increase in year 75, representing a sudden regime shift
or influx of predators during a period in which data on the change in
M may be available. These scenarios were chosen because they were
two of the more informative cases (i.e. produced a covariance matrix
over the widest range of fixed values used for M in the EM). The
series of assumed M values for both scenarios ranged from
Mhistorical 20.07 to Mhistorical + 0.07 in steps of 0.01.

Model performance
Estimation performance was evaluated using measures of relative
error, RE = (û − u)/u, and the median absolute relative error,
MARE = median(|û − u|/u), where û are estimated values and u

are true values from the OM. The MARE was used to assess perform-
ance by combining bias and precision into a single metric. The
median values were used because the mean values can be heavily
influenced by occasional outlying estimates. REs were calculated
for the time-series of SSB and F values, a forecasted TAC for year
100, as well as for virgin recruitment (R0), q, and M (when it was esti-
mated). The TAC for year 100 was based on the estimated FMSY,
where SS3 was conditioned to calculate FMSY based on the biological
parameters from the last year of the simulation. SSB and F from the
terminal year were reported because these quantities are often
important for forecasting and management.

Knowing precisely how a parameter varies across time is unreal-
istic. Therefore, the assessment configuration that minimized the
maximum possible MARE (the min–max solution) in terminal
SSB and TAC across the entire range of investigated true M scenarios
was identified. The min–max solution identifies the stock assess-
ment configuration that minimizes the possible losses given no in-
formation about M. In addition, the min–max solution was
calculated for the situation where an analyst has data regarding
Mhistorical (e.g. from tagging data or a pre-exploitation estimate),
but does not have information regarding M*.

Model fits were assessed for convergence, where convergence was
defined as the production of a covariance matrix and no estimated
parameters on bounds (Supplementary Table S1). A time-series
was regenerated when a replicate failed to converge. It is likely that
an analyst conducting assessments could have made adjustments
to achieve convergence in many of these cases (e.g. changed initial
values, bounds, and phases). Such manual tuning is not practical
in the context of a simulation study and therefore new datasets
were generated instead.

Results
Time-invariant M in the OM
The EMs performed well, given our chosen performance metrics
(i.e. estimating terminal SSB, terminal F, TAC, and M, if estimated),
when the true M was time-invariant and M was estimated or correct-
ly specified in the EM (i.e. a self-test). The median absolute relative
errors (MAREs) of terminal SSB and TAC, were close to zero when
the true M was time-invariant and M was correctly specified in the
EM (Tables 2 and 3, column “Constant”). The slope for survey select-
ivity (S4) was poorly estimated (i.e. large MARE) when M was cor-
rectly specified or estimated (Table 4), particularly for cod (Table 5).
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The accuracy of parameter estimates for the remaining parameters
depended on the fishing scenario. MAREs for growth, recruitment,
and fishery selectivity parameters were close to zero for the increase
and contrast fishing scenarios (Table 4). The model failed to accurate-
lyestimateq and R0 ona consistentbasiswhen M wasestimated for the
constant fishing scenario (Table 4). Specifically, 7% of the estimates of
R0 had a relative error .500% when M was estimated and F was con-
stant. Thus, because of the lack of information in the data under the
constant fishing scenario, further results will focus on the increase and
contrast fishing scenarios.

The EM estimated SSB and F more precisely when there was
survey data. The median REs for SSB and F were close to zero for
all years after year 74, which marked the start of the scientific

Table 2. MARE in terminal SSB for the cod-like life history.

Fishing scenario Estimation method

True trend in M

Constant Up 50 Up 75 Up 90 Down 50 Down 75 Down 90

Constant Estimated M 0.30 – – – – – –
Fixed Mhistorical 0.12 – – – – – –

Increase Estimated M 0.15 0.36 0.40 0.15 0.44 0.80 0.15
Fixed Mlow 0.31 0.47 0.43 0.23 0.12 0.18 0.34
Fixed Mhistorical 0.13 0.32 0.24 0.13 0.44 0.20 0.13
Fixed Mhigh 1.04 0.18 0.36 1.23 4.00 2.13 1.03

Contrast Estimated M 0.15 0.31 0.32 0.18 0.40 0.45 0.17
Fixed Mlow 0.27 0.38 0.36 0.18 0.13 0.19 0.32
Fixed Mhistorical 0.11 0.26 0.19 0.13 0.29 0.14 0.14
Fixed Mhigh 0.78 0.18 0.38 1.04 1.98 1.21 0.59

Values are reported for each of the three fishing patterns: constant, increase, and contrast. Italicized values are the scenario with the largest MAREs for each EM
(largest MARE in a given row). The min–max approach compares two MAREs: (i) estimating M and (ii) the maximum MARE encountered when M is specified
at Mlow, Mhistorical, or Mhigh. Underlined values are the minimum MARE of the two options, indicating which EM leads to the min–max solution (the stock
assessment method for which the analyst could go least wrong given no information about M ).

Table 3. Same as Table 2, except for TAC.

Fishing scenario Estimation method

True trend in M

Constant Up 50 Up 75 Up 90 Down 50 Down 75 Down 90

Constant Estimated M 0.36 – – – – – –
Fixed Mhistorical 0.13 – – – – – –

Increase Estimated M 0.20 0.48 0.55 0.24 0.58 1.19 0.21
Fixed Mlow 0.41 0.63 0.58 0.41 0.15 0.20 0.38
Fixed Mhistorical 0.14 0.43 0.34 0.14 0.62 0.33 0.13
Fixed Mhigh 1.52 0.21 0.47 1.47 5.91 3.22 1.73

Contrast Estimated M 0.19 0.42 0.45 0.19 0.58 0.72 0.19
Fixed Mlow 0.34 0.54 0.51 0.33 0.13 0.21 0.34
Fixed Mhistorical 0.11 0.35 0.28 0.11 0.44 0.22 0.11
Fixed Mhigh 1.12 0.21 0.42 1.13 3.00 1.84 1.06

Table 4. MAREs in parameter estimates for the cod-like life history.

Fishing scenario Estimation method R0 q L1 K CVyoung CVold S1 S2 S3 S4

Constant Estimated M 0.27 0.33 0.02 0.03 0.05 0.11 0.03 0.14 0.02 0.26
Fixed Mhistorical 0.06 0.10 0.02 0.04 0.05 0.11 0.03 0.14 0.01 0.28

Increase Estimated M 0.13 0.12 0.02 0.03 0.05 0.10 0.02 0.10 0.02 0.29
Fixed Mhistorical 0.05 0.08 0.02 0.03 0.05 0.10 0.02 0.10 0.01 0.29

Contrast Estimated M 0.13 0.12 0.02 0.04 0.04 0.10 0.02 0.12 0.02 0.27
Fixed Mhistorical 0.06 0.08 0.02 0.04 0.04 0.09 0.02 0.12 0.01 0.28

Values are reported for the self-test (i.e. time invariant M in the OM and a correctly specified EM) for each of the three fishing patterns: constant, increase, and
contrast.

Table 5. MAREs in parameter estimates for all three life history
types when M was time invariant or decreased to M* year 50
in the OM and was misspecified at Mhigh in the EM.

Life
history
type

Natural
mortality L1 K CVyoung CVold S1 S2 S3 S4

Cod Constant 0.02 0.04 0.04 0.10 0.03 0.13 0.02 0.25
Down 50 0.02 0.04 0.04 0.12 0.03 0.13 0.02 0.26

Flatfish Constant 0.06 0.16 0.17 0.13 0.02 0.07 0.02 0.15
Down 50 0.04 0.13 0.17 0.09 0.02 0.09 0.04 0.17

Sardine Constant 0.02 0.05 0.05 0.16 0.01 0.04 0.03 0.07
Down 50 0.01 0.04 0.05 0.11 0.02 0.04 0.04 0.08

Results are for the contrast fishing scenario.

Time-varying natural mortality in fisheries stock assessment models 141

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/72/1/137/823490 by guest on 24 April 2024



survey (Figures 2 and 3, respectively). The REs for F (Figure 3) were
qualitatively similar, but opposite in sign compared with results for
SSB (Figure 2). Therefore, only the results for SSB are discussed
further below.

Trends in the results for the life histories were similar, differing
only by the width of the inter-quartile ranges (Figures 2 and 3). In
addition, results were similar for the increase and contrast F scen-
arios [e.g. fail to reject the null hypothesis of equal RE in TAC
between the increase and contrast F scenarios when M was time-
invariant in the OM and fixed at Mhistorical in the EM; P(0.45 .

F1,594) ¼ 0.50; Supplementary Table S2]. Therefore, only results
for the contrast F scenario for the cod-like life history are presented
when the true M is time-invariant.

Estimates of M were relatively unbiased when the true M was
time-invariant (Figure 4, top box plot). As expected, the width of
the distribution for the RE of SSB increased (Figure 2) and the

MARE for TAC increased (Table 3) when M was estimated rather
than fixed at the true value. The distribution of the RE in SSB was
positively skewed for these scenarios, although the median was
close to zero.

Misspecifying time-invariant M
Misspecifying M when it was time-invariant in the OM led to biased
estimates of SSB and F. The REs for SSB were negative when the true
M was time-invariant and M was misspecified in the EM at a value
lower than true M (Figure 5b) and were positive when M was mis-
specified higher than the true value (Figure 5c). The MARE for
SSB increased with time for both of these scenarios. The REs in ter-
minal SSB increased non-linearly with increasing misspecification
(Figure 6a). The trend was more pronounced when M was fixed
higher rather than lower than the true value in the EM (Figures 5c
and 6a). For example, under the contrast fishing scenario, the

Figure 2. Time trajectories of relative error (RE) for SSB for the three life history types under the contrast fishing mortality scenario and when the
true M was time-invariant. The left column depicts results when M was fixed at the true value and the right column depicts results when M was
estimated. Values of zero (dashed line) indicate no difference between the OM value and the estimate from the EM. The shaded regions cover 50%
and 90% of the relative errors, and the line denotes the median. Data from scientific surveys were available starting in year 75.
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Figure 3. As for Figure 2, except results are shown for the relative error (RE) for F.

Figure 4. Boxplots for the relative errors (REs) in Mhistorical for the cod-like life history.
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Figure 5. Time trajectories of relative error (RE) for SSB for the cod-like life-history type under a contrast fishing scenario when the true M changed
in a block like fashion in years 50 or 90 or was constant across all years. M was either estimated, fixed at a high value, or fixed at a low value. Values of
zero (dashed line) indicate no difference between the OM value and the estimate from the EM. The solid vertical line indicates the year that M
changed to M*. The shaded regions cover 50% and 90% of the relative errors, and the line denotes the median.
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median RE in terminal SSB was �1 compared with 20.5 when M
was specified 0.07 year21 higher vs. 0.07 year21 lower than the
truth, respectively (Figure 6a). Patterns of RE for TAC (Figure 6c)
were qualitatively similar to SSB (Figure 6a).

Misspecifying time-varying M
For scenarios where M increased or decreased to a new value (M*) in
which the EM converged, results were qualitatively similar between
the life history types and thus only results for the cod-like life history
are included in the main text. Plots for the flatfish- and sardine-like
life histories, when the estimation model converged, are included in
the Supplementary material. The EM failed to produce a covariance
matrix for many scenarios involving the sardine-like life history
when M increased early in the time-series.

Fixing M at a highvalue in the EM led to biased estimates. The 50%
inter-quartile ranges for the RE for terminal SSB did not contain zero
when M was fixed at a high value in the EM for any investigated trend
in true M (Figure 5c, f, i, l, and o). The bias in terminal SSB (Figure 5f
and i) and R0 (Figure 7h and l) decreased when the increase to M* oc-
curred earlier in the time-series and M was fixed at a high value in the
EM. In contrast, the bias in SSB increased as M decreased to M* earlier
in the time-series and M was fixed at a high value in the EM (Figure 5l
and o). As expected, the REs for B0 increased as the REs for terminal
SSB decreased for these scenarios. Patterns of bias for SSB were
similar, though opposite in sign and smaller in scale, when M was
fixed at a low value in the EM (Figure 5).

The EM tended to underestimate Mhistorical when M* was above
Mhistorical and vice-versa (Figure 4). The inter-quartile ranges for the
RE in M were generally similar for the increase (Figure 4a) and con-
trast fishing mortality scenarios (Figure 4b). The accuracy of

predictions for terminal SSB was similar, although always less accur-
ate, when M was estimated compared with fixed at Mhistorical in the
EM for all investigated trends in M (Table 2). The REs in SSB dis-
played an abrupt peak or valley near the year in which the true M
changed to M* (Figure 5). The bias was similar before and after
the abrupt change, with the largest bias in unfished and terminal
SSB occurring when the model was misspecified for 50 years
(Figure 5g and m).

Using the average of Mhistorical and M* led to the least amount of
bias in terminal SSB. The rate of change of the median RE in terminal
SSB with the fixed value of M was relatively small for values between
Mhistorical and M* compared with values greater than M* (Figure 6b).
The general pattern was similar for TAC, although the bias was
slightly more negative for values less than Mhistorical than for termin-
al SSB (Figure 6d).

The EM compensated for misspecifications in M by adjusting q, a
parameter that relates observed biomass to stock size, and R0, which
defines maximum recruitment. EMs for each life history type
increased R0 to account for more fish when M was misspecified at
a high value (Figures 7 and 8, panels d, h, l, p, and t). The cod-like
life history had larger REs for q compared with the short-lived
(i.e. sardine-like) life history for the same scenario (Figures 7
and 8). Conversely, the sardine-like life history, where a larger pro-
portion of the population is made up of new recruits compared with
a long-lived fish, relied more on R0 to account for the misspecifica-
tion in M rather than q.

Min–max solution
Min–max solutions are useful to minimize the maximum loss given
a range of scenarios. Here, the min–max solution specifies the stock

Figure 6. Relative error (RE) for terminal SSB and TAC as a function of the assumed value for M, when the true M is constant across years (left
column) or increases to M* in year 75 (right column) for the cod-like life history under the contrast F scenario. The value to which the true M
changes, M*, is denoted by a solid vertical line.
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assessment configuration for which the analyst could go least wrong.
Two scenarios are considered: the analyst has no prior information
about M, and prior information about Mhistorical is known.

For an analyst wishing to minimize the maximum RE in terminal
SSB, with no information on how or when the true M is increasing or
decreasing, the min–max solution was to estimate a single time-
invariant M (Table 2). Estimating M was also the min–max solution
with regard to TAC, although the scenario with the minimum
MARE for a given EM was not necessarily the same between terminal
SSB (Table 2) and TAC (Table 3).

If the analyst had information regarding the value of Mhistorical,
the min–max approach was to fix M at Mhistorical, but this is only
possible if an external estimate of Mhistorical is available, which is

unlikely. The difference between best and worst MAREs for a
given EM was smaller under the contrast fishing scenario
(Tables 2 and 3).

Discussion
Estimating M, or fixing M at the long-term historical value if infor-
mation about Mhistorical is available, was the most robust EM across a
wide array of time-trends in the true M. Fixing M higher than the
true value led to the poorest performance for most trends in the
true M (i.e. performance was unevenly biased when M was fixed
at comparable high and low values). Although Mhigh and Mlow

were not equidistant from Mhistorical, results from the sensitivity ana-
lyses confirmed that fixing M at a low value can lead to less bias in

Figure 7. Correlation between the relative errors (REs) for R0 and q for the cod-like life history for two fishing patterns. Positive errors in parameter
estimates occur above and to the right of the dashed line, whereas negative errors occur below and to the left of the dashed line.
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SSB than fixing M at a high value (Figure 6). In contrast, Deroba and
Schueller (2013) found that the absolute values of the REs did not
differ when M was fixed at symmetrically high and low values.
Furthermore, they found that the REs were similar in scale when
the true M was increasing or decreasing, although opposite in
sign. Although Deroba and Schueller (2013) used a different mod-
elling framework, the Age-Structured Assessment Program (Legault
and Restrepo, 1999), the contradictory results are most likely not a
result of differing frameworks. Rather, the difference in conclusions
is likely a result of different quantities of data (e.g. length of time-
series and sample sizes) being supplied to the EM, and differing
assumptions regarding biological parameters (e.g. recruitment vari-
ability) and sampling schemes (e.g. selectivity) for each simulation.

It is well known that the estimation of M is heavily dependent on
the quality and availability of length- or age-composition data
(Beverton and Holt, 1957; Maunder and Wong, 2011). Simulations
were limited to a sample size of 100 for each type of composition
data in any given year, a sample size thought to be reflective of
actual contemporary commercial fishery data (Haltuch et al.,
2011). Furthermore, simulations were provided data from just 12 sci-
entific surveys. The choice to include a small quantity of data relative
to previous studies [e.g. 40 years of annual data with sample sizes of
500 per year (He et al., 2011)] was made to provide realistic advice
to analysts who are often provided even less data. Appropriateweight-
ing of data sources can be challenging (Francis, 2011), and the results
presented here may be subject to change if the models were tuned and

Figure 8. Correlation between the relative errors (REs) for R0 and q for the sardine-like life history for two fishing patterns. Positive errors in
parameter estimates occur above and to the right of the dashed line, whereas negative errors occur below and to the left of the dashed line. Empty
plots indicate scenarios where the optimization algorithm failed to converge.
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data were weighted differently (Maunder and Wong, 2011). For in-
stance, estimates of M may be less biased if more weight is given to
the age-composition data and less weight to the index of abundance
from the scientific survey. Conversely, estimates of SSB, F, and TAC
may be more biased if M is fixed in the EM and down-weighted
indices of abundance lead to further bias in q, particularly when the
true M is decreasing and M is fixed at a high value in the EM.
Further research is needed to determine how weighting affects per-
formance when M varies across time.

Quantifying the uncertainty in estimates of M whether they are
estimated external to the assessment or internally can be challen-
ging. Although the MARE was lower when M was set to Mhistorical,
knowing Mhistorical is rarely, if ever, known as precisely as was
assumed here. Even the rate at which a stock is fished can change
the uncertainty in estimates of M, with all else being equal.
Simulations that estimated M, estimated it with varying degrees of
uncertainty depending on the fishing scenario. When stocks were
fished at a constant rate, some replicates estimated M and various
performance metrics accurately but provided biologically implaus-
ible values of other parameters, such as q and R0. Thus, these results
provide further evidence for the lack of information in constant
fishing scenarios and the value of both one- and two-way trip scen-
arios (Hilborn and Walters, 1992; Magnusson and Hilborn, 2007).

The EMs did not include estimating a time-varying M, although
this has the potential to reduce bias in parameter estimates and
better fit the data (Jiao et al., 2012). Currently, the benefit of
adding additional parameters to model time-varying effects is un-
certain, and estimating time-varying M when the true M is constant
across time can lead to biased estimates of SSB and recruitment (Fu
and Quinn, 2000). In addition, multiple parameters have the poten-
tial to vary with time, and it becomes unclear which process should
be accounted for and with what parameters. For example, Fu and
Quinn (2000) found it is better to account for time-varying q by
modelling time-varying M rather than q itself. Furthermore, it has
been recommended that time-varying M only be estimated when
a pronounced temporal trend is present (Fu and Quinn, 2000)
and when survey data are uncorrelated (Myers and Cadigan,
1995a, b). In reality, an analyst will probably not know the true M
and whether or not it varies with age or time, let alone whether or
not the variation is pronounced. Nevertheless, simulations show a
stationary M is estimable in SCAA models if the model is correctly
specified and if the data lack patterns in the residuals (Lee et al.,
2011). Further research is needed to determine when it is best to
include added model complexity compared with assuming M is
time-invariant.

The results were not qualitatively robust to trends in the true
fishing pattern. Fishing at a constant rate compared with the con-
trast scenario led to less information in the data and higher
MAREs for all three model outputs (terminal SSB, terminal F, and
TAC) for the self-test. It is well known that F is confounded with
M, making it difficult to separate fishing from total mortality if
catch-at-age data do not include both years of high and low
fishing effort (Beverton and Holt, 1957; Hilborn and Walters,
1992). Lapointe et al. (1989) also note differences in estimates
with varying levels of F when M is misspecified. Their results may
be specific to virtual population analysis (VPA) where the errors
are influenced by the ratio of F/M, with smaller ratios leading to
larger errors (Vetter, 1988; Bradford and Peterman, 1989), which
get increasingly larger as the VPA works backwards in time from the
oldest to the youngest (Saila et al., 1985). Schnute and Richards
(1995) also found that fishing at a lower and more constant rate led

to higher REs for q, but no change in the estimates of M. Conversely,
Deroba and Schueller (2013) found that trends in F across time had
little effect on the REs of parameter estimates when the true M (age-
or time-specific) trended across years.

The estimates of M and SSB were positively correlated, i.e. popu-
lation size increased as the estimate of M increased to account for the
greater mortality. Therefore, biases in SSB will not be consistent
across a time-series when M is misspecified some of the time.
Depletion, which is thought to be a robust indicator of population
status (He et al., 2011), will be biased in these scenarios because
the biases of terminal and virgin SSB will be opposite in sign.
Terminal SSB was least biased when M was fixed in the EM at the
true Mhistorical or estimated. There were two exceptions to this
finding: (i) when M was fixed at M* in the EM and the true M
increased or decreased to M* in year 50, or (ii) when fishing mortal-
ity increased with time, M decreased in year 75, and M was fixed at
the true M* value from the last 75 years of the time-series.
Presumably, this is because the model obtains information about
M from the initial age structure and can compensate for the misspe-
cification in the later years by under- and overestimating other para-
meters such as q, F, and recruitment (Schnute and Richards, 1995).

The focus of this study was on the misspecification of M; there-
fore, all other parameters were correctly specified. In actuality, as-
sessment models likely misspecify several parameters to various
degrees. Assessments can produce unbiased estimates of manage-
ment quantities if the misspecification acts in countering ways
when more than one parameter is misspecified (Tyler et al., 1989).
Whether the misspecification works in a countering or parallel
way largely depends on which parameters are estimated, the abun-
dance and quality of available data, and the shape of the selectivity
pattern (He et al., 2011). Previous simulations show that when se-
lectivity is dome-shaped, estimates of M are often unreliable, steep-
ness is often estimated against its higher bound, and there can be
convergence issues (He et al., 2011; Lee et al., 2011). Therefore,
the results may not be applicable to scenarios where selectivity is
dome-shaped. Consequently, results from the current study were
interpreted to represent relative performance of the EMs rather
than absolute performance. More work is needed to explore the
effects of multiple parameter misspecification and its implications
on the estimation of parameters and reference points.

Supplementary material
Supplementary material is available at the ICESJMS online version
of the manuscript.
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