'.Lgf
cience

ICES Journal of Marine Science (2015), 72(1), 7—18. doi:10.1093 /icesjms/fsu015

I( : I : f ; International Council for
the Exploration of the Sea
. ( :I E M Conseil International pour

I'Exploration de la Mer

Original Articles

Contemporary fisheries stock assessment: many issues still remain

Mark N. Maunder’2* and Kevin R. Piner3

Ynter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA
“Center for the Advancement of Population Assessment Methodology, Scripps Institution of Oceanography, La Jolla, USA
3NOAA Fisheries, Southwest Fisheries Science Center, 8901 La Jolla Shores Dr, La Jolla, CA 92037-1508, USA

*Corresponding author: tel: +1 858 546 7027; fax: +1 858 546 7133; e-mail: mmaunder@iattc.org
Maunder, M. N,, and Piner, K. R. Contemporary fisheries stock assessment: many issues still remain. — ICES Journal of Marine Science, 72: 7-18.

Received 23 September 2013; accepted 17 January 2014; advance access publication 25 February 2014.

Interpretation of data used in fisheries assessment and management requires knowledge of population (e.g. growth, natural mortality, and
recruitment), fisheries (e.g. selectivity), and sampling processes. Without this knowledge, assumptions need to be made, either implicitly or
explicitly based on the methods used. Incorrect assumptions can have a substantial impact on stock assessment results and management
advice. Unfortunately, there is a lack of understanding of these processes for most, if not all, stocks and even for processes that have trad-
itionally been assumed to be well understood (e.g. growth and selectivity). We use information content of typical fisheries data that is in-
formative about absolute abundance to illustrate some of the main issues in fisheries stock assessment. We concentrate on information
about absolute abundance from indices of relative abundance combined with catch, and age and length-composition data and how the
information depends on knowledge of population, fishing, and sampling processes. We also illustrate two recently developed diagnostic
methods that can be used to evaluate the absolute abundance information content of the data. Finally, we discuss some of the reasons for

the slowness of progress in fisheries stock assessment.
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Introduction

It is surprising that half a century after the publication of Beverton
and Holt’s (1957) manual on fisheries stock assessment, many of the
same issues still remain unresolved. These unresolved issues include
critical biological and fisheries processes such as growth, natural
mortality, recruitment, and selectivity. Despite the lack of progress
in some areas, there have been several major developments in our
understanding of other areas of fishery modelling and analysis
(Quinn, 2003). Age-structured models used for yield-per-recruit
analysis and the notion of density-dependence in the stock—
recruitment relationship caused assessment scientists to realize
that the traditional Schaefer model (Schaefer, 1954) with maximum
sustainable yield (MSY) occurring at 50% of the unexploited level
was suboptimal. This understanding led Pella and Tomlinson
(1969) to develop a generalized surplus production model for which
MSY could occur at any level of unfished biomass. Age-structure
models were also developed to reconstruct abundance from the
time-series of age-composition data [e.g. cohort analysis (Pope
1972), virtual population analysis (VPA; Gulland, 1965), extended

survivors analysis (Shepherd, 1999)]. A lack of a complete time-
series of composition data for many species has led to the extensive
use of integrated models that use all available data simultaneously in
a statistical framework (Fournier and Archibald, 1982; Deriso et al.,
1985; Maunder and Punt, 2013) and the development of the soft-
ware to implement them [e.g. AD Model Builder (ADMB);
Fournier et al., 2012]. Lack of age data for hard-to-age species has
led to the development of integrated length-structured models
(Punt and Kennedy, 1997; Punt et al., 2013). Models have also
been developed to include multiple species (e.g. Jurado-Molina
et al., 2005). Several general models are now available to implement
integrated analysis [e.g. Stock Synthesis (Methot, 1990; Methot and
Wetzel, 2013), Coleraine (Hilborn et al., 2000), CASAL (Bull et al.,
2005), MULTIFAN-CL (Fournier et al., 1998; Hampton and
Fournier, 2001), Gadget (Begley and Howell, 2004)] and greatly fa-
cilitate the application of stock assessments.

Fisheries stock assessment has also been at the forefront of
Bayesian applications (Punt and Hilborn, 1997). The early applica-
tions of Bayesian analysis for integrated stock assessment models
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were some of the most complicated applications in any field at the
time (e.g. McAllister et al., 1994; McAllister and Ianelli, 1997).
Many of the early applications used the sampling/importance
resampling algorithm (McAllister et al., 1994). Bayesian analysis
was greatly facilitated by the development of Markov chain Monte
Carlo (MCMG; e.g. Punt and Kennedy, 1997) and inclusion of an
MCMC algorithm in ADMB (Fournier et al., 2012). One of the
early ADMB-based general models, Coleraine (Hilborn et al,
2000), was based on the Bayesian paradigm (e.g. priors were imple-
mented for all estimated parameters). Bayesian analysis accommo-
dates the use of prior information in integrated assessments,
allowing sharing of information from other species or the inclusion
of expert opinion with the associated uncertainty. This is particular-
ly useful for low information species (Cope, 2013). It also allows for
the representation of uncertainty in a probabilistic context, which is
ideal for decision analysis. The use of Bayesian analysis promoted
the development of methods to develop priors such as meta-analysis
of data from many populations (e.g. Hilborn and Liermann, 1998;
Myers et al., 1999; Dorn, 2002). Finally, due to the realization that
there is substantial uncertainty in most stock assessments, a whole
field of research has evolved around developing and testing manage-
ment procedures that are robust to the uncertainty (de la Mare,
1986; Butterworth et al., 1997; De Oliveira et al., 1998;
Butterworth and Punt, 1999; Smith et al., 1999). These management
procedures are comprehensive and include the data collected, the
analytical methods, and the resulting management actions.

Stock assessment models make use of multiple data types to
inform modelled processes. The data typically available for use in
the model include catch by fleet (e.g. gear), indices of relative abun-
dance from either fisheries catch per unit effort (cpue) or
fishery-independent surveys, and catch and/or survey composition
(age, length, or weight). In addition to information on absolute
abundance and abundance trends, these data must provide infor-
mation on growth, recruitment including the stock—recruitment
relationship and variation around the relationship, natural mortal-
ity, and selectivity, among other processes. Examples of directly
informing model process include age—length data from otoliths
that provide information on growth or composition data to
inform selection. However, modelled processes receiving informa-
tion indirectly from data sources are often poorly estimated, and
therefore, the parameters representing these processes (e.g. the
steepness of the stock—recruitment curve and natural mortality)
are typically assumed and fixed in the model. Unfortunately, the
lack of reliable direct data on these processes results in the need to
make highly uncertain assumptions. Sensitivity analyses to these
assumptions are often conducted to investigate the consequences
of this uncertainty, but without probabilistic statements for differ-
ent values of the parameters, which are often not available because
data are not informative, sensitivity analyses are difficult to interpret
in terms of management advice. In addition, there is a lack of diag-
nostic tools to determine when a parameter value is assumed incor-
rectly.

Reference points that are typically determined using stock assess-
ment models and evaluated using the results of stock assessments are
also sensitive to biological parameters (Maunder, 2012) and select-
ivity (Goodyear, 1996). For example, Maunder (2002, 2012) showed
that the biomass corresponding to MSY as a ratio of the unexploited
biomass, a standard reference point that is also often used in harvest
control rules, depends on the steepness of the stock—recruitment re-
lationship, natural mortality, and the growth rate. Maunder (2003)
also showed that the same reference point is also sensitive to the
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selectivity of the gear. Uncertainty or bias in the biological or
fishing processes can substantially impact the estimates of reference
points and has led to the use of proxy reference points that are con-
sidered robust to uncertainty or are precautionary (Clark, 1991,
2002). The implications may be greater in management systems
for which complex decision rules are used to set annual catch
limits. The abundance estimates are used twice, first to determine
what harvest rate is applied (e.g. the harvest rate is reduced from
Fusy if the biomass is less than Bygy) then as a product with the
harvest rate to determine the catch level.

The objective of this paper is to make evident the fact that a sub-
stantial amount of additional research remains that could improve
stock assessments and ensure sustainable management of fish
stocks. We use information content of typical fisheries data on abso-
lute abundance to illustrate some of the main issues in fisheries stock
assessment. We concentrate on information about absolute abun-
dance from indices of relative abundance combined with catch
and age- and length-composition data and how the information
depends on knowledge of population, fishing, and sampling pro-
cesses. Next, we summarize the uncertainty in our knowledge of
these processes. We then illustrate two recently developed diagnostic
methods that can be used to evaluate the absolute abundance infor-
mation content of the data. Finally, we describe, from our perspec-
tive, some of the factors hindering the progress of improving
fisheries stock assessment.

Absolute abundance information

Estimating absolute abundance is an essential component of most
fisheries stock assessments because total allowable catch is often cal-
culated as a harvest rate applied to the model estimate of abundance.
In contemporary integrated stock assessments, a variety of data
types can be included in the analysis and simultaneously provide in-
formation on all estimated parameters (Maunder and Punt, 2013).
In these integrated models, the production processes (growth,
natural mortality, and stock—recruit relationship) are often fixed
(the parameters representing these processes are not estimated,
but set at predetermined values), making estimation of absolute
abundance the focus (intended or not) of the analysis. However,
the complexity of integrated models makes it difficult to understand
the role that data types have on the model estimates of scale. Data
interact with structural assumptions producing estimates that are
often unexpected and unintuitive. Here, we illustrate that the infor-
mation on absolute abundance from each data type depends on
population (recruitment, natural mortality, and growth), fishing
(selectivity), and sampling processes.

Indices of relative abundance

Indices of relative abundance are a common data type used in inte-
grated stock-assessment models. They can be derived from dedi-
cated research surveys or developed from fishery cpue data.
Typically, the catchability of the gear is not known even for statistic-
ally designed surveys, and the catchability coefficient (the propor-
tionality constant that converts the relative index into absolute
abundance) of the index of abundance is estimated as a parameter
in integrated stock-assessment models. So, in practice, these data
are generally not used as measures of absolute abundance (i.e.
survey catchability is not set to 1).

The depletion in abundance, as measured by an index of relative
abundance, caused by a known level of catch can be used to calculate
the initial biomass, as illustrated in Figure 1 (initial biomass equals
catch divided by depletion proportion). The actual depletion will be

20z Iudy 0z uo 1senb Aq ZGE61.8/./1/2./oPIHE/SWISE01/W00"dNO-0IWaPEoE//:SARY WO POPEOIUMOQ



Contemporary fisheries stock assessment

0.8
Catch

Productivity
=R+G-M
0

1989 1990 1991 1992
Year

0.6

0.4

Relative abundance

0.2

Figure 1. lllustration of the absolute abundance information
contained in indices of relative abundance and its reliance on biological,
fishing, and sampling processes. The solid and dashed lines represent
depletion in the presence and the absence of biological processes,
respectively. The arrows represent sampling error. d, depletion; R,
recruitment; G, growth; M, natural mortality.

less because production (the difference between increase in abun-
dance due to growth and recruitment and the decrease in abundance
due to natural mortality) will generally increase the abundance
between the two relative biomass estimates. There is also the compli-
cation of what component of the population is represented by the
index of abundance, as measured by the gear selectivity, and what
component of the population is represented by the catch, particular-
ly if the catch and index come from different gears. Each relative
index data point is a sample of the abundance, not a census, so it con-
tains some random sampling error. In addition, other factors not
accounted for in the index (e.g. temporal variability in the environ-
ment, expansion of the oxygen minimum layer; Stramma et al.,
2008) may cause catchability to vary over time introducing
further error into the index. This clearly illustrates that information
about absolute abundance from indices of relative abundance con-
ditioned on catch depends on population dynamics (e.g. natural
mortality, recruitment, and growth), fishing (e.g. selectivity), and
sampling (e.g. random sampling variability and temporal variation
in catchability), and these must be taken into consideration when
interpreting the data.

Age- and length-composition data

Composition data, either from fisheries or from surveys, are used in
most current assessments of major fish stocks. Length-composition
data are the most common and can be converted to age composition
using age—length keys either inside (e.g. by fitting to both age con-
ditioned on length and length-composition data) or outside the as-
sessment model. Age composition is the more direct measure and is
therefore considered more informative when the ageing procedures
are well established. VPA and cohort analysis, traditionally used for
major fish stocks, rely on comprehensive age-composition data for
all years, and therefore, data collecting programmes for these stocks
have concentrated on collecting age-composition data or using
methods (e.g. cohort slicing) to convert length-composition data
into age composition. However, the collection of composition
data is usually expensive, an expense that increases with the add-
itional sample processing associated with production ageing, al-
though the per-otolith costs may decrease with production
ageing. Thus, there are limited age-composition data for many
stocks, sometimes relying entirely on length-composition data. It
is this lack of consistent age-composition data that has led to the ex-
tensive use of integrated analysis (Maunder and Punt, 2013; Punt
et al., 2013). Integrated analysis has the added advantage of

including other types of data, such as weight composition, sex com-
position, and stage categories.

Age-composition data have generally been considered to provide
information on cohort strength (recruitment) and selectivity in
integrated stock assessment models. However, as part of an inte-
grated analysis, age- and length-composition data are also linked
to the population governing processes, and through these provide
information on fishing mortality. The higher the fishing mortality
the less likely a fish will survive to an old age. In combination with
known catch, fishing mortality provides information on absolute
abundance by definition, since fishing mortality approximately
equals catch divided by biomass (F ~ C/B). This relationship
between composition data and fishing mortality has roots in the
tradition of using a linear regression applied to the logarithm of
the relative abundance of a cohort at age to estimate total mortality
(catch curve analysis). In the simplest form, the relative abundance
of a cohort over time is usually not available so the analysis is applied
to catch-at-age, which is the relative abundance of multiple cohorts
of different ages. However, this regression has several problems, as
illustrated in Figure 2. First, it is an estimate of total mortality so
there must be an estimate of natural mortality to separate out
fishing mortality. The cohorts at different ages are not observed
equally so the selectivity of the sampling gear must be taken into
consideration. In addition, the fishing mortality and recruitment
are assumed to be in equilibrium, but the fishery selectivity will
mean that different ages will experience different fishing mortality
and fishing mortality may change over time. The different cohorts
may experience different recruitment levels. There is also sampling
error, since the data are not a census. All these assumptions can be
fully explored in an integrated analysis with sufficient data.

Age data are not available for many species, so length-composition
data are used. This brings the additional complication of converting
length into age in age-structured models, which requires knowledge
of the mean length-at-age and the variation of length-at-age using
standard approaches in integrated stock assessment. Typically, the
variation at a given age is assumed to be normally distributed
(Figure 3). The mean length-at-age and variation of length-at-age
are generally assumed to follow functional forms, so similar ages
have similar mean length and variation. This means that changing
the expected mean length for the oldest age also changes the expected
mean length for slightly younger ages similarly, compounding the
effect of growth on interpreting fishing mortality information from
length-composition data. In particular, the meanlength and variation
of length for the oldest ages are highly influential on the estimated
fishing mortality and biomass levels. The mean length of old fish
and estimated fishing mortality are negatively correlated. Increasing
the mean length of the oldest age causes the estimated relative abun-
dance of the oldest age to reduce to fit the length composition of the
largest fish (Figure 4, upper panel). Similarly, increasing the variation
of length for the oldest age causes the estimated abundance of the
oldest age to reduce to fit the length composition of the largest fish
(Figure 4, lower panel). The reduction in the abundance of the
oldest fish is generally estimated by increasing fishing mortality.
Dome-shape selectivity can also explain the reduction, but most
assessments assume that at least one selectivity curve is asymptotic
to avoid “cryptic biomass” (e.g. older fish that are no longer vulner-
able to the gear). This clearly illustrates that information about abso-
lute abundance from age- or size-composition data depends on
population dynamics (e.g. natural mortality, recruitment, and
growth), fishing (e.g. selectivity), and sampling (e.g. random sam-
pling variability and temporal variation in catchability). Our
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Figure 2. Influence of biological, fishing, and sampling processes on the
information content of age-composition data. (a) The influence of
natural mortality on the catch curve. The thick and thin lines represent
with and without natural mortality, respectively. (b) The influence of
selectivity. Dashed, selectivity; long dashed and solid lines represent the
catch curve with and without selectivity, respectively. (c) The influence
of recruitment variability and sampling error. The dash-dot and dashed
lines represent the catch curve with and without recruitment
variability, respectively. The dots include the sampling error.

understanding of these model processes must be taken into consider-
ation when interpreting the information on absolute abundance from
age- or length-composition data.

Uncertainty in population, fishing,

and sampling processes

The illustration of how absolute abundance information is extracted
from relative indices of abundance and age- or size-composition
data shows that it probably cannot be reliably done without knowl-
edge of growth, recruitment, natural mortality, selectivity, and sam-
pling processes. Similarly, these are important for determining
fisheries management and reference points. Unfortunately, these
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Figure 3. Influence of biological processes on information contained
in length-composition data. The dashed lines represent the
length-composition data from each of three cohorts. The solid line
represents combined length-composition data. The dots include the
sampling error.
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length-composition data. A lower peak of the length-composition
curve relates to higher fishing mortality.

are poorly known for many, if not most, species. Below, we summar-
ize the uncertainties about these processes.

Growth

Growth is generally considered to be one of the most well-estimated
processes due to the prevalence of ageing data. However, growth is
often poorly estimated for many species due to lack of appropriate
data, particularly for short-lived tropical species. There is often
large uncertainty with variability from different ageing techniques
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and the ageing techniques have not been appropriately validated.
For example, Chang and Maunder (2012) found a large variation
in the estimates of growth parameters from different ageing
methods (otolith, scale, and length-composition analysis) and
among different stocks for dolphin fish (Coryphaena hippurus).
Even for species for which ageing data have traditionally been
thought to be good, ageing can turn out to be biased (Piner et al.,
2005; Stewart and Piner, 2007). For example, modes in the length-
composition data from surveys for Pacific cod (Gadus macrocepha-
lus) indicate that the otolith often puts down one additional ring,
which produces underestimates of the growth rate if counted.
Consequently, the current stock assessment estimates the ageing
error internally (Thompson and Lauth, 2011). Ageing of yellowfin
and bigeye tuna from daily rings in otoliths becomes difficult after
about age 4 years (e.g. Wild, 1986), so assumptions must be made
about the asymptotic length to extrapolate growth rates above
age 4. However, the assessment model is fit to length-composition
data so the evaluation of standard biomass and fishing mortality ref-
erence points are highly sensitive to the assumed asymptotic length
(e.g. Aires-da-Silva et al., submitted).

Use of length-composition data in integrated stock assessment
models requires both the mean and the variation of length-at-age.
Most growth studies do not report the variation of length-at-age.
Therefore, the variation of length-at-age is often a missing compo-
nent of stock assessment models, and a value has to be assumed. The
estimates of management quantities can be sensitive to the assumed
value.

Recruitment

The relationship between spawner stock size and the resulting re-
cruitment has had a great deal of attention and research (Hilborn
and Walters, 1992). However, for most stocks, little is known
about the stock—recruitment relationship. The uncertainty results
from several factors, including lack of contrast in spawning stock
size, environmental variability, temporal autocorrelation in
deviations about the stock—recruitment relationship, and error in
estimating spawning stock size and recruitment (Hilborn and
Walters, 1992; Quinn and Deriso, 1999). Typically, a stock—
recruitment model (e.g. Ricker, 1954; Beverton and Holt, 1957) is
fit to a time-series of stock and recruitment estimates. Stock size
and recruitment are estimated in stock assessment models. It is in-
tuitively better to estimate the stock—recruitment model inside the
stock assessment model because it automatically takes the uncer-
tainty of the stock size and recruitment into consideration
(Maunder and Punt, 2013). However, several simulation studies
have shown that the estimates of the stock—recruitment relation-
ship are often highly uncertain or biased (Magnusson and Hilborn,
2007; Conn et al., 2010; Lee et al., 2012) and the benefits of estimating
the stock recruitment model inside the stock assessment model are
case-specific (Haltuch et al., 2008, 2009). In particular, the estimate
of steepness of the Beverton and Holt (1957) model is positively
biased towards recruitment being independent of stock size, which
produces greater productivity rates and often produces more opti-
mistic stock status and management advice (e.g. greater catch
limits). Regime shifts in recruitment caused by environmental condi-
tions also frequently bias estimates of the stock—recruitment curve
(Gilbert, 1997).

Given the inability to reliably estimate the stock—recruitment re-
lationship, it is common to use default parameter values or borrow
parameter values from similar stocks or species. Meta-analysis has
been used to analyse stock and recruitment data from a collection
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of species and provide advice on parameter values that can be
used for stocks for which there is little information (Myers et al.,
1999; Dorn, 2002; Punt and Dorn, 2013). Unfortunately, the reli-
ability of advice from meta-analyses is questionable because knowl-
edge of each time-series is needed to ensure that the results are not
affected by other factors (e.g. regime shifts) and meta-analysis is vul-
nerable to the same biases as the analysis of individual stocks.
Therefore, the capacity of meta-analysis to provide additional reli-
able information on uncertain parameters is unclear and its useful-
ness will probably differ among applications. Attempts to estimate
parameter values for the stock—recruitment relationship based on
the life-history theory (He et al., 2006; Mangel et al., 2010) do
not, for any practical purposes, narrow the range of possible param-
eter values (Maunder, 2012).

Because of the inherent difficulties in reliably estimating the
stock—recruitment relationship for most stocks, management strat-
egies must be robust to uncertainty in the stock—recruitment rela-
tionship. Due to the flatness of the yield curve when steepness is
high, less yield (in equilibrium) is lost by assuming a steepness
lower than the actual steepness than assuming steepness is higher
than it actually is, suggesting that assuming a lower steepness may
be a more robust assumption in terms of maximizing equilibrium
yield (Zhu et al., 2012). Williams and Shertzer (2003) suggest that
reference points should be developed for individual stocks by select-
ing appropriate proxy steepness values rather than using proxy ref-
erence points. Further work in this area is needed because of our
inability to define the spawner—recruit relationship and its import-
ance in both biological reference point calculations and future pro-
jections.

Natural mortality

Despite its importance in determining the productivity of a popula-
tionand the consequent impact on sustainable yields, there hasbeen a
surprising lack of attention paid to developing direct (e.g. based on
tagging data for the species of interest) estimates of natural mortality.
Uncertainty could be reduced with more reliable estimates of natural
mortality. However, most stocks lack a direct estimate of natural mor-
tality and rely on indirect methods (e.g. correlations with life-history
parameters (Pauly, 1980; Jensen, 1996; Gunderson, 1997) or from
maximum age (Hoenig, 1983). The indirect methods are potentially
biased with low precision as they are generated based on relationships
with other unreliable estimates of natural mortality (Pascual and
Iribarne, 1993; Maunder and Wong, 2011). In a recent review of the
indirect methods, Kenchington (2013 ) stated “None of the 30 [indir-
ect methods] can provide accurate estimates for every species, and
none appears sufficiently precise for use in analytical stock assess-
ments, while several perform so poorly as to have no practical
utility.” Many of the direct estimates of natural mortality for specific
stocks are based on data that are used in contemporary integrated
stock assessments (e.g. age composition), and even mark-recapture
data can be included in integrated stock assessments to provide in-
formation about natural mortality (Maunder, 1998, 2001;
Hampton and Fournier, 2001; Goethel et al., 2011). Recent studies
have shown some promise in estimating natural mortality inside
integrated assessments conditioned on including the right data,
periods of low stock size, and the absence of significant model mis-
specification (Lee et al., 2011). The issues addressed above do not
even include the reality that natural mortality is likely to vary with
age, sex, stock density, and time (Vetter, 1988). Given our current
understanding of this key component of stock productivity, it
seems likely that in the short term substantial uncertainty will
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remain, at least into the near future. Based on updating and testing
indirect estimators of natural mortality using information on
201 fish species, Then et al. (2015) recommend the use of their
updated maximum age-based estimator when possible and an
updated von Bertalanffy K-based method otherwise. Despite
remaining concerns over these methods, Then et al.’s advice is prob-
ably the best currently available, except in cases for which reliable
direct estimates are available or simulation analysis indicates esti-
mates within the stock assessment model are reliable.

Selectivity

Selectivity has traditionally been assumed to be well estimated in
integrated stock assessment models when ample age- or size-
composition data are available. However, recent research has shown
that the functional forms currently used are often too inflexible and
misspecification of the selectivity curve can have substantial influ-
ence on stock assessment results and management advice (Crone
et al., 2013; Lee et al., in press). Spatial variability in fishery and
population structure can result in the estimation of unexpected se-
lectivity shapes, including dome shape, even when the underlying
gear selectivity is asymptotic (Sampson and Scott, 2011). Dome-
shapeness of the selectivity curve is very influential when using
length-composition data and interacts with the estimate of the
asymptotic length to determine fishing mortality and absolute
abundance. In addition, selectivity is likely to change over time,
and assuming constant selectivity will bias results. The issues with
misspecified selectivity parameterization go far beyond a biased
estimate of the selectivity pattern and resulting catch-at-age.
Misspecified selectivity patterns can result in systematic misfit to
age- or size-composition data that can result in degraded fit to
other important data (Francis, 2011; Lee et al., in press). A
growing body of research suggests that more flexible selection par-
ameterization (e.g. non-parametric, time-varying) should be con-
sidered (Crone et al., 2013).

Catchability
Catchability is the process that scales the index of relative abundance
into absolute abundance. In early applications, it has been custom-
ary to assume that catchability of surveys is known. The assumed
value was often based on research (e.g. gear studies; Somerton
et al., 1999); and the assumption provided direct information on
population scale thereby reducing uncertainty of stock assessment
results. Setting the catchability parameter stabilizes parameter
estimation by eliminating correlation with other parameters.
Unfortunately, usually additional research, such as towing commer-
cial gear side by side with the survey gear, eventually shows that
catchability (after expansion of the survey index of abundance to
the population level) rarely is 1 (commonly less, see Harley and
Myers, 2001) and varies by species and even time. Indices of relative
abundance based on fisheries cpue data tend to have even more tem-
poral variation in catchability because standardization methods are
unable to account for all the variation in fishing vessels, fisher behav-
iour, and the environment (Maunder and Punt, 2004). Temporal
trends in catchability (e.g. Harley et al. 2001) in addition to uncer-
tainty in mean catchability are particularly problematic, since they
will bias estimates of depletion levels. Therefore, uncertainty in
both the average level of catchability and the variation over time
can contribute substantially to the uncertainty in stock assessment
results and estimates of management quantities.

In some cases where catchability was misspecified, the selectivity
curve estimated inside the assessment for the index is distorted to
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account for the misspecification. In practice, catchability is typically
estimated, but is confounded with other model parameters (e.g.
natural mortality) and can be difficult to estimate inside the stock
assessment model. Information on catchability comes from the in-
formation on absolute abundance from the index of relative abun-
dance conditioned on the catch and the composition data as
explained earlier.

Sampling and process error/variability

Contemporary stock assessment models typically account for both
sampling (observation) and process error (variability). Data col-
lected from a stock is not a census, but a sample of the population
and different (hypothetical) samples will provide somewhat differ-
ent information (sampling error). The nature of the sampling error
should be taken into consideration when using the data to estimate
the model parameters and the associated uncertainty. Contemporary
statistically integrated stock assessment models generally use the sam-
pling distribution to define the likelihood function, which is used as
the basis for the objective function used in parameter and uncertainty
estimation (e.g. maximum likelihood and Bayesian analysis). The dis-
tributional form and the parameters of the sampling distribution
must be defined. However, it is the variance-related parameters
(e.g. sample size of a multinomial used for composition data or the
standard deviation of a lognormal distribution used for the relative
index of abundance data) that tend to be most influential because
they determine the weight each dataset gets in the parameter estima-
tion and the overall uncertainty in parameter estimates. Commonly,
the variance parameters are fixed, but methods are available to esti-
mate the variance parameters (Deriso et al., 2007; McAllister and
Tanelli, 1997; Maunder, 2011). The estimated variance parameters
are statistically determined, based on how consistent the data is
with themselves (e.g. low variance is often associated with a relative
index of abundance that does not change much from one year to
the next despite how reliable it is), the assumed population dynamics,
the other data, and how many and what type of parameters are esti-
mated to allow the model to fit the data closely (e.g. the more para-
meters estimated, the closer the fit and the less sampling variance
estimated).

Process error is additional variability in the population (e.g. re-
cruitment), fishing (e.g. selectivity), or sampling processes (e.g.
survey catchability) that are not represented by the main structure
of the model. The most commonly modelled process error is tem-
poral variation in recruitment. In this context, the term process
error is somewhat confusing since the recruitment strength each
year is an important component of the model and intuitively
should be part of the main model parameters. However, without
good age-composition data for each year, the annual recruitment
may be uncertain for some years. To improve estimation, the
assumed distribution of recruitment variation (e.g. lognormal
around the stock—recruitment relationship) can be taken advantage
of (Maunder and Deriso, 2003). To estimate the variance of the re-
cruitment distribution, the process error should be treated as a
random effect (or, equivalently, a state-space model used) and inte-
grated out. Thisisa computationally intensive multidimensional in-
tegral in stock assessment models and has had limited application
outside a Bayesian context [see Nielsen and Berg (in press) for an
exception].

The variance parameters used in sampling distributions general-
ly require the process model, including the model that relates the
sampled data to the population dynamics, to be correctly specified.
However, the process model is typically not modelled correctly. For
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example, population dynamics (e.g. natural mortality), fishery
(e.g. selectivity), and sampling (e.g. survey catchability) processes
likely vary over time, but are assumed to be time invariant in
many assessment models. Ignoring this variability will result in
the model not fitting the observed data as well as suggested by the
variance parameters of the sampling distributions. Estimation of
the variance parameters of the sampling distributions inside the
stock assessment model will result in the process error being
assumed by the observation error variances. One example is the in-
flation of standard deviations for survey data because of temporal
variability in catchability due to factors such as the environmental
conditions. Another is the reduction in the effective sample size of
composition data due to unmodelled correlation in the sampling
process (i.e. many species school by size and repeated samples
from a purse-seine set on a single school will be correlated). The ob-
servation and process errors are typically assumed to be random, but
often there are correlations particularly in process errors, which
show temporal autocorrelation. It is not clear if accommodating
the unmodelled process error (e.g. temporal variation in selectivity)
in the observation error is appropriate. It may be better to estimate
the observation error outside the model (e.g. bootstrapping the
composition data sampling design) and explicitly modelling
the process error inside the model (e.g. time varying selectivity).
This would require using computationally intensive methods
[e.g. random effects (Fournier et al., 2012; Nielsen and Berg, in
press) or cross-validation (e.g. Maunder and Harley, 2011)] to esti-
mate the variance parameters of the process error, which may be im-
practical for some applications. However, promising less
computationally  intensive approximations are available
(Thompson and Lauth, 2012).

Diagnostics

Diagnostics are important tools to determine if the model fits
the data adequately and that the model is well specified.
Unfortunately, there are few standard diagnostics tools available
for integrated stock assessment models that can provide the
analyst with all the information needed to determine model per-
formance. Here, we describe two recently developed diagnostic
tools that can be used to evaluate the information content of data
about absolute abundance and help determine if the model is cor-
rectly specified. However, more thorough testing of these methods
is needed to determine their usefulness (e.g. Wang et al., in press).

RO likelihood component profile diagnostic

The RO likelihood component profile diagnostic estimates all model
parameters while fixing the population scaling parameter (often the
virgin recruitment) at different values and plotting the resultant
likelihood (or commonly, the negative log-likelihood) value for
each data component against this parameter (Francis, 2011; Lee
et al., in press). The likelihood profiles of each data component
usually follow a smooth parabolic curve, indicating the value with
most support and the amount of uncertainty in that support.
Different maxima (minima if the negative log-likelihood is used)
among data components indicate possible conflict in the data
sources about absolute abundance. The higher the gradient in the
likelihood profile the more influential that data source on the
model’s estimate of scale. We recommend also applying the RO
profile to data simulated without error from a model structured
the same as the application. This RO profile (simulated RO profile)
will illustrate the information content of the data expected if the
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model is correctly specified and any differences from the actual RO
profile indicates conflict in the data or model misspecification.

The RO profile has been used to diagnose selectivity misspecifica-
tion (Lee et al., in press; Wang et al., in press). Despite age- and size-
composition data possibly providing substantial information on ab-
solute abundance as shown by RO component profiles using correct-
ly specified models (Wang et al., in press), there has been a trend to
deemphasize the abundance content of age- and size-composition
data (Francis, 2011). This is because relatively minor model misspe-
cification (e.g. a too inflexible selectivity curve) can have a large
impact on the information about absolute abundance contained
in the composition data (Lee et al., in press). The weighting of the
age- and size-composition data (e.g. the sample size) can be
decreased until the RO profile shows that the age- and size-
composition data have relatively low influence compared with the
other data. The idea is to remove catch out of the population at
about the right size without providing additional information on
abundance. Information focusing estimation that estimates select-
ivity and recruitment deviates only when fitting to the age- and size-
composition data is a new approach in fisheries stock assessment
that might achieve this (T. Kitakado, pers. comm.).

Age-structured production model diagnostic

A comparison of the results of the age-structured production model
(ASPM) to those from a model estimating the full dynamics and
fitting to all the data (e.g. an integrated analysis) can be used as a
diagnostic tool. Similar to the RO profile, this diagnostic can be
used to evaluate model misspecification and the contribution of
age- or size-composition data to estimates of absolute abundance.
Unlike the profile diagnostic, comparison of the ASPM also can
be used to evaluate if the catch alone (taken out of approximately
the correct ages) can explain trends in the index of abundance.
When catch does explain indices with good contrast (e.g. declining
and increasing trends), it suggests that a production function is ap-
parent in the data, therefore providing evidence that the index is a
reasonable proxy of stock trend. If catch cannot explain the index,
then either the stock is recruitment driven (or did not decline
far enough to show changes in recruitment due to the stock—
recruitment relationship), the model is incorrect, or the index of
relative abundance is not proportional to abundance. These kinds
of results are especially important in stock assessments based on
fishery-dependent cpue whose true relationship with trends in
abundance is always in doubt.

To perform the diagnostic, the parameters of the selectivity curve
in the ASPM are fixed at those estimated from the fully dynamic
model, the annual recruitment deviates are not estimated (fixed at
zero so that recruitment follows the stock—recruitment relation-
ship), and the age- and size-composition data are not used. If the
age- and size-composition data are not informing the absolute
abundance or the abundance trend and thereis no pattern in recruit-
ment, the results from the age-structured model should be similar to
the full dynamics analysis. To determine if a recruitment trend is
causing any differences, recruitment deviates can be added to the
ASPM.

Two hypothetical examples based on experience using the diag-
nostic are used to illustrate the method. The first hypothetical
example illustrates how the age-composition data are influencing
the absolute abundance and reducing the weight on the compos-
ition data causes the integrated model to estimate similar abundance
levels as the ASPM (Figure 5, upper panel). The second hypothetical
example illustrates how a pattern in recruitment deviates in the

$202 I4dy 0z uo 1senb Aq 2Ge61.8/2/1/2 /8101 e/SWise01/wo0 dno-ojwepeoe//:sdiy wolj papeojumoq



14

(a) 120000,
100 000 |
80 000

60 000 {

Spawning biomass

40 000

20000

0
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

====ASPM =——Integrated = = Down weighted composition

—_—
=}
~—

120000 4

100 000 | » /
‘ i
1 [
80000 H v

Spawning biomass
[}
o
(=1
[=}
(=1

1980 1985 1990 1995 2000 2005 2010 2015
-===ASPM

Integrated = = ASPM Rdev = + = ASPM hest

Figure 5. Hypothetical results of applying the production model
diagnostic. (a) Composition data are influencing the estimates of
absolute abundance. (b) Misspecified steepness of the stock—
recruitment relationship.

integrated model causes a difference with the ASPM (Figure 5, lower
panel). Adding recruitment deviates to the ASPM gives similar
results to the integrated model. Exploration of the recruitment devi-
ates (positive deviates for low stock size and negative deviates for
high stock size) suggests that the stock—recruitment relationship
was misspecified at too low of a value. Estimating the steepness of
the Beverton and Holt (1957) stock—recruitment relationship in
the ASPM (without recruitment variability), which was originally
fixed, produced results similar to the integrated model, supporting
the misspecified stock—recruitment relationship hypothesis. We
have only begun to use the ASPM diagnostic and without more
testing, its utility remains speculative.

Impediments to progress
Despite the importance of commercial fisheries worldwide, there
remains tremendous uncertainty in even our basic understanding
of stock productivity and condition. Perhaps, the most basic
impediment to improving our understanding is a lack of relevant
and reliable data needed to assess the status of stocks. For many
species, thelack of quality data may result from a reasonable decision
because the cost of collecting good data cannot be justified based on
the value of the fishery. However, for other more valuable or import-
ant stocks, the funding levels of science is either insufficient to
collect the necessary data or has not been allocated in ways that
would have improved the applied understanding of fisheries science.
Thelack of sufficient funding cannot be blamed entirely on a lack
of interest in fisheries or fisheries management. Both private and
public groups have shown a willingness to spend, often large sums
of money, in high-profile cases. There are many examples for
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which industry is funding science and data collection (e.g. the
International Seafood Sustainable Foundation) or is offsetting the
costs of public spending. Private interest groups are also spending
sizeable amounts of money in fisheries; often willing to contract
highly paid consultants when they perceive that the assessment
and management is inappropriate and impacting the levels of
catch or endangering the sustainability of the resource. However,
in most situations, it is government funding of data collection and
research that provides the information used to manage stocks.

If adequate funding is being spent on fisheries, but unacceptable
uncertainties remain, we may need to reassess the ways we are spend-
ing those finite resources. In situations where basic data are missing,
are we spending applied science resources on less immediate needs
associated with long-term goals of ecosystem-based management or
onwhat may be more theoretical research on climate change, marine
protected areas, and environmental covariates, which could be argu-
ably less useful for routine management of fish stocks. We need to
carefully assess if the level of funding and those projects funded
for research and management is aligned with the economic value
of the resources and with benefits of the resources to society in
general.

As large as the data gap is, the lack of highly trained stock assess-
ment scientists and the finite time available for the limited number
of qualified scientists that exist currently (Berkson et al., 2009a, b)
may turn out to be an even larger obstacle to improving fisheries
management. To be useful for fisheries management, the multiple
sources of data available have to be processed using ever more
complex quantitative methods to extract and combine the informa-
tion they contain. As discussed in this paper, research on improving
our understanding of technical aspects of fisheries stock assessment
modelling (particularly since stock assessment is done with limited
data and simplifying assumptions need to be made) still need to be
conducted. However, all these pursuits need considerable attention
from an already overburdened pool of scientists. As more stocks are
added to the list of species requiring quantitative management
advice, even more requirements will be placed on the existing
stock assessment scientists, further compounding the issue.

Efforts are underway to rectify the deficiency in the number of
qualified stock assessment scientists; however, they may not be suf-
ficient. Recent hiring in the United States of stock assessment aca-
demics to train graduate students is an important step, but may be
too slow and produce too few scientists to make up for those lost
to retirement. Part of the problem is a lack of critical mass in aca-
demic institutions due to the specialized nature of stock assessment,
and improvements in this situation may require collaboration
among academic institutions. Too much time is spent on attempt-
ing to train life science graduates using short courses in the funda-
mentals of stock assessment. Short courses are insufficient to train
qualified scientists and keep their interest. These courses usually
lack the basic mathematical content to underpin participants
understanding of stock assessment concepts. Applied mathematics
graduates are needed in stock assessment, but there are not enough
role models at universities. A similar situation is apparent world-
wide and is particularly of concern in small or developing nations
for which researchers with expertise in stock assessment tend to
move to the larger developed countries, where there is a higher con-
centration of talent, to improve their financial situations, or to
advance their careers. Complicating the situation is the fact that
graduate students trained overseas often stay overseas. A 1-year
post-PhD diploma programme to retrain quantitative ecologists,
statisticians, and other quantitatively trained scientists may be the
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quickest way to train the stock assessment scientists needed. The
programme may require collaboration between multiple univer-
sities and management agencies to contain the courses needed
and provide mentoring and practical experience. However, such a
programme has not been implemented and therefore is unproven.

A greater commitment to improving the applied aspects of fish-
eries science is needed from all scientists including those who do not
have direct management-related responsibilities. Solutions to the
basic problems and not just influential publications are needed.
For example, it may be possible to publish a paper on the first arch-
ival tag applied to a species where new behaviour is often discovered,
but it is the next 100 recoveries that are needed to infer population
level processes useful for stock assessment. Demonstrated improve-
ment of fisheries management should be rewarded at least as much
as influential publications in both career advancement and future
funding.

Finally, our interactions with the larger public needs to be
improved. Too often the public’s perception of resource health is
taken from controversial information published in high-profile
journals. There have been several influential articles published in
high-profile journals in the past decade that have focused on the
dire state of the world’s fish stocks (e.g. Casey and Myers, 1998;
Pauly et al., 1998; Roberts et al., 2001; Conover and Munch, 2002;
Baum et al., 2003; Myers and Worm, 2003; Worm et al., 2006).
These articles gained considerable media attention and may have
been more publishable for that reason (Hilborn, 2006). However,
some high-profile articles have been shown to be seriously flawed,
but only after being read by the scientific community, policy-
makers, and the public. The costs of misinformation extend
beyond the public perception as they may further reduce research
time for practicing stock-assessment scientists who, must spend
time responding to those controversial results (Hilborn, 2006)
and attract graduate students away from basic stock assessment re-
search. It is also concerning that rebuttals to these articles (e.g.
Hilborn, 2002; Walters, 2003; Hampton et al., 2005; Essington
et al., 2006; Maunder et al., 2006; Polacheck, 2006; Sibert et al.,
2007; Branch, 2008) generally garner far less public attention as
they are often published in the technical literature with less main-
stream media fanfare. A better peer review and reward system is
needed to ensure research is focused and constructive.

Conclusion

Interpretation of data used in fisheries assessment and management
requires the knowledge of population (e.g. growth, natural mortal-
ity, and recruitment), fishing (e.g. selectivity), and sampling pro-
cesses. Without this knowledge, assumptions must be made,
either implicitly or explicitly, based on the methods used.
Incorrect assumptions can have a substantial impact on stock assess-
ment results and management advice. Unfortunately, there is a lack
of understanding of these processes for most, if not all, stocks and
even for those processes that have traditionally been assumed to
be well understood (e.g. growth and selectivity). There are various
reasons for the lack of understanding, but fisheries science is at a
point at which decisions must be made—whether comprehensive
research should be focused on understanding these processes or
whether management should be designed to be robust, not just con-
servative, to the uncertainty. If understanding is the path to be taken,
then substantially more investment is needed in training stock-
assessment scientists, stock assessment research, biological studies,
and data collection in a coordinated and focused approach. Some
of these problems are related the current socio-economic situation
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and, with any luck, may improve in the future. However, it is likely
that many of the issues will still remain without a concerted effort to
rectify them. Several efforts, but of limited scope, are being made in
this respect, such as research towards developing a guide to good
stock assessment practices [e.g. the Center for the Advancement
of Population Assessment Methodology (CAPAM)].
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