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Ocean acidification (OA), caused by seawater CO2 uptake, has significant impacts on marine calcifying organisms and phototrophs. However, the
response of bacterial communities, who play a crucial role in marine biogeochemical cycling, to OA is still not well understood. Previous studies have
shown that the diversity and structure of microbial communities change undeterminably with elevated pCO2. Here, novel phylogenetic molecular
ecological networks (pMENs) were employed to investigate the interactions of native bacterial communities in response to OA in the Arctic Ocean
through a mesocosm experiment. The pMENs results were in line with the null hypothesis that elevated pCO2/pH does not affect biogeochemistry
processes. The number of nodes within the pMENs and the connectivity of the bacterial communities were similar, despite increased pCO2 con-
centrations. Our results indicate that elevated pCO2 did not significantly affect microbial community structure and succession in the Arctic Ocean,
suggesting bacterioplankton community resilience to elevated pCO2. The competitive interactions among the native bacterioplankton, as well as
the modular community structure, may contribute to this resilience. This pMENs-based investigation of the interactions among microbial com-
munity members at different pCO2 concentrations provides a new insight into our understanding of how OA affects the microbial community.
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Introduction
Since the industrial revolution, the impact of human activity on the
global climate has increased greatly as a result of increasing carbon
dioxide (CO2) emissions from anthropogenic sources. The uptake
of anthropogenic carbon dioxide by the ocean has caused a decrease
of pH 0.1 units (ocean acidification, OA; IPCC, 2015). Previous
studies have demonstrated that some phototrophic communities,
like sea grass (Zimmerman et al., 1997; Jiang et al., 2010), diatoms
(Riebesell et al., 1993; Baragi et al., 2015; Taucher et al., 2015),

and coccolithophorids (Hiwatari et al., 1995; Lv et al., 2015), have
higher photosynthesis rates under a higher partial pressure of
carbon dioxide (pCO2). However, the response of marine bacterio-
plankton, a crucial player in marine biogeochemical cycling (Azam,
1998; Jiao et al., 2010), to OA is not well understood at present. Joint
et al. (2011) proposed that “marine microbes possess the flexibility
to accommodate pH change”. Indeed, several mesocosm studies
have found that elevated pCO2 has little effect on bacterial commu-
nities in the Arctic Ocean (Allgaier et al., 2008; Tanaka et al., 2008;
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Oliver et al., 2014). The abundance and activity of bacteria in these
communities did not differ statistically under three different pCO2

treatments (350, 700, and 1085 matm; Allgaier et al., 2008).
Furthermore, phylogenetic diversity analysis revealed no clear
effect of elevated pCO2 on a bacterioplankton assemblage in the
high Arctic Ocean (Monier et al., 2014). In contrast, a few studies
have demonstrated that elevated pCO2 has some influence on mi-
crobial community composition (Krause et al., 2012; Bowen et al.,
2013). Other studies have also shown that the production and
growth rates of bacterial isolates were strongly affected by high
pCO2 and low pH (Takeuchi et al., 1997; Labare et al., 2010; Teira
et al., 2012). For example, Vibrio alginolyticus growth was sup-
pressed under low pCO2 levels (Michael et al., 2010). In contrast,
high pCO2 stimulated the growth efficiency of one Flavobacteria
strain (Teira et al., 2012). Moreover, the rate of microbial
ammonia oxidation is inhibited by reduced pH in both surface
and deep seawater (Huesemann et al., 2002). Conflicting results
from the population/ecosystem and species levels indicate that
community may play a crucial role in determining the response of
microbes to OA. In addition to community structure and the
number of species, micro-organism interaction is an important
component of diversity (Olesen et al., 2007). Forexample, ecological
networks among different species bridge ecosystem complexity and
stability (Montoya et al., 2006). The interaction between plants and
pollination enhances the relative resistance of plants to environmen-
tal disturbance (Sole and Montoya, 2001; Memmott et al., 2004).
Compared with network investigations among macro-organisms
(Elton, 1927; Paine, 1980; Bascompte et al., 2003), microbial inter-
actions and ecological networks are understudied and have only
been investigated recently with advances in molecular technology
(Sherr and Sherr, 2008; Chaffron et al., 2010; Steele et al., 2011).
Several microbial network investigations have been conducted on
temporal variation in microbial communities and the interactions
among bacteria, phage, and protists at the San Pedro Ocean
Time-series (SPOT) station off southern California (Chow et al.,
2013, 2014). Bacterial interaction has also been proposed as a deter-
minant of phytoplankton bloom dynamics (Tan et al., 2015).
Currently, only a few investigations have been performed to illus-
trate the interaction of microbial communities in response to
climate change in soil environments (Zhou et al., 2010; Tu et al.,
2015), but no studies have addressed interactions among micro-
organisms under elevated pCO2 in the marine environment.

A large-scale mesocosm experiment, European Project on OCean
Acidification (EPOCA), was set up in the pelagic coastal area of the
Arctic Ocean to assess the impact of OA on the marine ecosystem.
Previous EPOCA studies have demonstrated that the phytoplankton
community was more susceptible to elevated pCO2 than the bacterio-
plankton community, where pico-phytoplankton and diatoms were
stimulated by nutrient addition and elevated pCO2, resulting in
increased primary production (Riebesell et al., 2013b). Bacterial
activity was subsequently spurred by stimulated primary production
and elevated pCO2, leading to a decrease in net production (Engel
et al., 2013; Motegi et al., 2013). However, bacterial production and
respiration were generally similar among the pCO2 mesocosms
during the incubation period (Motegi et al., 2013). Nonetheless,
bacterioplankton activity was closely related to phytoplankton
under both ambient and elevated pCO2, and limited by both nutrient
availability and elevated pCO2 (Riebesell et al., 2013b). The general
diversity and composition of microbial communities has been evalu-
ated by Automated Ribosomal Spacer Analysis (Sperling et al., 2013),
T-RFLP, clone libraries (Zhang et al., 2013), and next-generation

sequencing (Roy et al., 2013), all of which indicated that increased
pCO2 did not significantly impact the communities. However,
because of limited sample numbers and sequencing depth, the
above dataset cannot be used to explore the interactions among
bacterial groups under elevated pCO2. Thus, we examined the struc-
ture and diversity of microbial communities at this site using Illumina
sequencing and performed phylogenetic molecular ecological
network (pMEN) analysis using the Molecular Ecological Network
Analysis Pipeline (MENAP; Deng et al., 2012) for samples collected
from nine mesocosms, each having a different pCO2 level (175–
1085 matm), which simulated different acidification scenarios. We
tested the null hypothesis that elevated pCO2 would have an insignifi-
cant or indirect impact on bacterial assemblages as proposed by Joint
et al. (2011), with a focus on the interactions among bacterioplankton
under different pCO2 concentrations. Our results indicated an insig-
nificant effect of elevated pCO2 on microbial assemblage interactions
and connectivity and provide a deep insight into our understanding
of bacterioplankton assemblage resistance to climate change.

Material and methods
Experimental set-up and sampling
A large-scale mesocosm experiment, supported by EPOCA, was con-
ducted in the Arctic Ocean at Kongsfjorden, Svalbard, Norway
(78856.2′N, 11854.6′E), from June to July 2010. Experimental set-up
details have been described previously (Riebesell et al., 2013a). Briefly,
ninemesocosms(45 m3 volume),eachsimulatingadifferentpCO2 con-
centration (�175, �180, �250, �340, �450, �600, �675, �860,
and �1085 matm) by bubbled CO2, were deployed into the Arctic
Ocean. On day 13, nutrients were added to induce phytoplankton
bloom development (Schulz et al., 2013).

Sample collection was carried out according to Zhang et al.
(2013). Briefly, seawater (2 l) collected from nine mesocosms was
filtered onto a 0.22 mm pore filter (GTTP, Millipore) to collect mi-
crobial cells. The filters were stored at 2808C until DNA extraction.
In total, we obtained 165 environmental DNA samples from the nine
mesocosms over 19 sampling points (not all treatments contain all
time points; Supplementary Table S1). Geochemistry and biological
parameters were downloaded from the EPOCA website (http://
www.epoca-project.eu; Nisumaa et al., 2010). The geochemistry
parameters included temperature, salinity, pH, oxygen, particle
organic carbon (POC), particle organic nitrogen, particle organic
phosphorus, NO3, Si, PO4, and NH4; the biological parameters
included bacterial production, chlorophyll a concentration, bacter-
ial abundance, bacterial respiration, bacterial biomass production,
viral abundance, and pico-phytoplankton abundance.

DNA extraction, Illumina high-throughput sequencing,
and analysis
DNA was extracted by a freeze-grinding method as described previ-
ously (Zhang et al., 2013). The forward (515F, 5′-GTGCCAGCM
GCCGCGG-3′) and reverse (806R, 5′-GGACTACHVGGGTWTC
TAAT-3′) primers were used to target the bacterial 16S rDNA
gene V4 hyper-variable region (Caporaso et al., 2012). PCR ampli-
fication was performed as described by Caporaso et al. (2010). The
amplicons were then paired-end sequenced using the Illumina MiSeq
platform (Illumina, Inc., San Diego, CA, USA) and the reads were
then analysed through an in-house sequence analysis pipeline (IEG
sequence analysis pipeline, http://zhoulab5.rccc.ou.edu). Briefly,
the sequence length was trimmed (minimum length, 100 bp),
Btrim was used to remove sequencing adaptors and low quality
regions, and sequences with quality scores ,20 were then removed
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(Kong, 2011). Thereafter, UCHIME was employed to remove the
chimeric sequences (Edgar et al., 2011). The number of sequences
from each sample was resampled randomly to 35 000. The sequences
were then clustered using the CD-HIT algorithm (Li and Godzik,
2006). The taxonomic assignment was determined using the RDP
(Ribosome Database Project) classifier against the RDP 16S rRNA
database based on BLAST (Wang et al., 2007).

pMEN construction and network analysis
Sequence alignment was carriedout bythe PyNASTalignment method
against pre-aligned reference 16S rRNA sequences (Caporaso et al.,
2009), followed by approximately maximum-likelihood tree construc-
tion using the FastTree method with default settings (Price et al., 2009;
Morgan et al., 2010). Comparison of microbial community diversity
was performed using the Unifrac method in a phylogenetic context
(Lozupone and Knight, 2005, 2007; Lozupone et al., 2006) followed
by principal coordinates analysis (PCoA). pMENs analysis was per-
formed based on the relative abundance of all samples through the
molecular ecological networks analysis pipeline (http://ieg2.ou.edu/
MENA; Zhou et al., 2010,2011; Deng et al., 2012). The whole process
and details are given in a previous MENA study (Deng et al., 2012);
we briefly introduced the major process in the present study. OTUs
that appeared in 13 or fewer samples were removed. The relative abun-
dance of OTUs was log-transformed and missing values were filled
with a very small number (0.01) if paired valid values were available.
This step ensured a more statistically reliable correlation coefficient
between two OTUs. Following data preparation, the relative abun-
dance of each OTU in each sample was used to generate the similarity
matrix as the foundation for subsequent steps. Similarity matrices
(adjacencymatrix) were created foreach network basedonthepairwise
Pearson correlation coefficient across the time-series (one time points
lag). To obtain a confident network construction, the threshold of
pairwise Pearson correlation coefficient values between OTUs was
identified by an RMT-based approach that observed a transition
point of nearest-neighbour spacing distribution of eigenvalues from
Gaussian to Poisson distribution (Zhou et al., 2010). To compare net-
works, an identification cut-off of 0.84 (0.85 for 175 and 860 matm
treatments) was used to construct the microbial community networks.
Additionally, ecological networks predicted by R2 (R2 . 0.8) gener-
ated based on the random matrix theory (RMT) should be scale-free
(Zhou et al., 2010). An identification cut-off of 0.84 for 175 and
860 matm treatments did not obtain an R2 . 0.8, where 0.85 could.
To evaluate whether or not the constructed networks were random,
we employed a permutation-based null model analysis with 100 per-
mutations and kept the number of nodes and links constant. A
Student’s t-test was performed to evaluate significance differences
between random and experimental networks. Once the pMEN was
determined, the topological indices were calculated based on the ad-
jacency matrix. Module detection of each network was based on fast
greedy modularity optimization (Newman, 2006a). Identification of
key module members was based on within-module connectivity (Zi)
and among-module connectivity (Pi) of each node (Olesen et al.,
2007). Eigen-gene, which is a linear combination of genes and eigen-
values (Deng et al., 2012), was detected by singular value decompos-
ition analysis (Alter et al., 2000). Thereafter, trait-based gene
significance (GS), which is the correlation of relative abundance of
each OTU to a sample trait (e.g. pCO2, temperature), was calculated.
Networks were visualized with the NetworkAnalyzer plugin of the
Cytoscape 3.1.1 (Assenov et al., 2008). Mantel tests were performed
to identify relationships between pMENs and biological and chemical
variables (Zhou et al., 2010).

Nucleotide sequence accession number
Sequences obtained in this study were uploaded to the MG-RAST
database under the ID number 4626065.3.

Results
A previous study sequenced samples from this same experimental
site, collected across nine time-points, using the Illumina
HiSeq2000 platform (Roy et al., 2013); however, network analysis
studies and our preliminary tests suggested that this sampling fre-
quency does not result in accurate and reliable network analysis.
Therefore, we expanded this sample set to include 19 time-points
for each of nine pCO2 treatments, nine more time-points than
Roy et al. (2013; Supplementary Table S1). These DNA samples
were also used to investigate the bacterioplankton community by
T-RFLP in a previous study (Zhang et al., 2013). Results from differ-
ent sequencing platforms or different runs on the same platform can
affect the estimation of microbial diversity (Zhou et al., 2013), so all
samples were sequenced together on the Illumina MiSeq platform.
The microbial community structure revealed in our study (dis-
cussed below) did not show obvious differences from those of Roy
et al. (2013). In total, �8 900 000 paired-end reads were generated
after quality control in this study, with an average length of
�250 bp (Supplementary Table S1). To increase the reliability of
comparison among samples, the sequences were resampled with a
threshold of 35 000.

Bacterial community composition and diversity
Similar bacterial community composition and structure were
observed in the nine pCO2 treatments during the entire incubation
period (Table 1, Figure 1, and Supplementary Figure S2), which is
consistent with previous results (Roy et al., 2013; Sperling et al.,
2013; Zhang et al., 2013). The Proteobacteria, Bacteroidetes,
Actinobacteria, and Cyanobacteria/chloroplast were predominant in
all nine mesocosms. The relative abundance of these micro-
organisms varied over the incubation period. For example, the
Proteobacteria dominated at the beginning of the incubation period
and then decreased in relative abundance; while the Bacteroidetes
exhibited a relatively high abundance at the end of the incubation,
which could be a response to the phytoplankton bloom (Figure 1).
Meanwhile, the rarefaction curves for all samples revealed variations
in richness and diversity among samples (Supplementary Figure S1).
The bacterioplankton community diversity, including Chao index
and PD, as well as richness, decreased during the incubation
period in all pCO2 treatments (Supplementary Figures S2 and S3).
The weighted PCoA results revealed that the bacterial community
structures were altered by nutrient addition, although there was no
clear pattern among different pCO2 treatments (Supplementary
Figure S4).

Microbial community interactions
The increased number of sequences obtained by high-throughput
sequencing technology afforded us the unprecedented opportunity
to investigate the interaction and connectivity within these micro-
bial communities using network analysis. pMEN analysis is a
novel RMT-based framework for studying microbial interaction,
which has been used in long-term CO2 experiments (Zhou et al.,
2010, 2011; Tu et al., 2015). In the pMEN analysis, a node in
pMEN indicates an OTU, while a link indicates a correlation
between two connected nodes. The connectivity, also called node
degree, indicates the connection strength of a node; therefore,
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higher average connectivity means a more complex network.
Geodesic distance means the shortest path between two nodes,
while a smaller average geodesic distance means the nodes in a
network are closer. The average clustering coefficient means the
extent of a module in a network, where the clustering coefficient
describes how well a node is connected with its neighbours. The
network can be separated into communities or modules (Newman,
2006b). The modularity value indicates how well a network can be
divided into modules. In our study, elevated pCO2 generally had
no consistent influence on the connectivity of micro-organisms
observed via pMENs analysis (Table 1). For example, the size
(number of total nodes) of pMENs under 175 and 180 matm pCO2

were smaller than for higher-level treatments (250, 425, 600, and
675 matm), while they were similar to those from the 860 and
1085 matm mesocosms. Additionally, the total number of links
and average connectivity were similar among the nine pCO2 treat-
ments. Average geodesic distance and average clustering coefficients
revealed a discrepancychangealong the pCO2 gradient.The modular-
ity of nine pMENs, which contained at least four modules each,
suggested that the bacterial communities in these mesocosms were
highly complex (Olesen et al., 2007). Strong negative correlations
were observed in all nine pMENs, while positive correlations primar-
ily occurred in submodules (Figure 2). These results suggested poten-
tial competition among bacterial lineages in these ecosystems.

Connectivity analysis among or within the modules showed that
different microbial clades played different roles in the pMENs
(Figure 3). From an ecological perspective, the peripherals may re-
present specialists, whereas module hubs and connectors may be
more generalists and network hubs may be super-generalists
(Olesen et al., 2007; Deng et al., 2012). The relatively higher abun-
dance of Alphaproteobacteria and Flavobacteria suggest that they play
crucial roles in the pMENs. The number of connectors was greater
under 250, 600, and 1085 matm pCO2, which suggested a greater com-
plexity in these microbial communities (Supplementary Figure S5).
Larger numbers of OTUs belonging to Alphaproteobacteria and
Flavobacteria were observed under 250 and 600 pCO2. Network
module hubs are another important factor in network topology.
Compared with connectors, there were fewer module hubs, but
they were dominated by Gammaproteobacteria (Supplementary
Table S4). Unexpectedly, no network connectors or module hubs
were detected under 175 and 860 matm. Consistent with previous
studies, no network hub was detected in any pMEN (Zhou et al.,
2010, 2011; Deng et al., 2012). These results indicated that
Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria play an
important role in maintaining the stability of microbial ecosystems
in these mesocosms.

The Mantel test was performed to investigate the correlation
between environmental variables and micro-organism interactions.
The OTU significance (GS) in the pMENs were calculated, which
were defined as the square of the Pearson correlation coefficient
(r2) of OTU abundance profile with environmental traits (Deng
et al., 2012), and did not significantly correlate with either biological
or chemical parameters in almost all of the pMENs, except for the
860 matm treatment (Supplementary Table S2). Furthermore, rare
individual variables were significantly correlated with the network
topological properties. However, the 250 and 340 matm pMENs
were significantly correlated with particle organic phosphorus and
NO2 concentration, respectively. The 675 and 860 matm pMENs
were significantly correlated with incubation day and pH, and bac-
terial abundance, viral abundance, and particle organic nitrogen, re-
spectively. These significant correlations indicated connectivityTa
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among these micro-organisms under 860 matm pCO2 because both
were significantly associated with changes in biological and geo-
chemical variables. However, there was no clear trend in these cor-
relations between topology properties and environmental variables
along the pCO2 gradient, which suggested that elevated pCO2 had
little effect on the global interaction properties. Mantel analysis
was also used to investigate the correlation between environmental
variables and pMEN microbial composition. Similarly, the Mantel
test results between pMEN topology and environmental variables
revealed that few OTUs were significantly correlated with environ-
mental variables (Supplementary Table S3). Cyanobacteria/chloro-
plast were significantly correlated with environmental properties
under the 180 and 1085 matm pCO2 treatments. Betaproteobacteria
and Gammaoproteobacteria were significant in the 675 matm pCO2

pMEN. These results indicated that Proteobacteria were more sensitive
to changes in marine variables, especially under high pCO2. They also
indicated that no specific bacteria was significantly correlated with
changes in either environmental variables or pCO2 concentrations.

Discussion
Understanding the response of bacterioplankton communities to
elevated pCO2 is important for evaluating climate change effects on
the ocean ecosystem. However, how the marine bacteria respond to
elevated pCO2 and decreased pH is not well understood and remains
controversial (Liu et al., 2010; Joint et al., 2011). The EPOCA meso-
cosm experiments have provided a great opportunity to answer this
critical question at the community-level (Riebesell et al., 2013b). The
present study surveyed bacterioplankton communities by MiSeq

Figure 1. Heatmap of sample compositions based on the proportion of each classes. Black represents the non-detected class; colour from dark to
light indicates the proportion from low to high. The pCO2 concentrations (matm) from A to I are 175, 180, 250, 340, 425, 600, 675, 860, and 1085.
x-axis (D and a number) indicate the incubation day from 21 (DC-1) to day 30.
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sequencing of 16S rRNA gene amplicons and RMT-based ecological
network analysis. Previous studies have demonstrated that phyto-
plankton respond significantly to elevated pCO2 (Riebesell et al.,
2013a, b; Schulz et al., 2013). Moreover, primary production and bac-
terial protein production are simultaneously stimulated by elevated
pCO2 (Engel et al., 2013; Motegi et al., 2013; Piontek et al., 2013),
which generally results in net production decreases by the end of
incubation experiments (Engel et al., 2013). Our results indicated

that the phylogenetic diversity and structure of bacterioplankton
communities were generally similar among different pCO2

treatments, which is consistent with previous EPOCA bacterial com-
munity investigations (Roy et al., 2013; Sperling et al., 2013).
Furthermore, the pMEN analysis suggested that the bacterioplankton
community did not respond significantly to elevated pCO2 at the
community level, which means that our study agreed with the
null hypothesis that changes in pCO2 concentration have little

Figure 2. Bacterioplankton network interactions under 175 (a), 180 (b), 250 (c), 340 (d), 425 (e), 600 (f), 675 (g), 860 (h), and 1085 (i) matm pCO2.
Five to seven modules were formed under different pCO2 concentrations. Each node represents an out, which signified a species. Node colours
indicate different phyla. Each line connects two OTUs. A blue line indicates a positive interaction between two individual nodes suggesting a
mutualism or cooperation, while a red line indicates a negative interaction suggesting predation or competition. Top five highest-abundance OTUs
are indicated by bigger dots and marked with OTU identification numbers. The cycle composed of several nodes is a module in the pMEN, which is
more correlated in a module than between other modules. Only the module containing more than five OTUs are displayed.

870 Y. Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/73/3/865/2458761 by guest on 13 M
arch 2024



influence on the affected microbial communities (Joint et al., 2011)
and the bacterioplankton community had a certain resilience to the
pCO2 perturbations. The present study provides novel insights into
how bacterioplankton communities respond to ongoing pCO2

increases.
Generally, high diversity is thought to allow bacterial communi-

ties to resist disturbance, this is known as the “insurance effect”
(Boles et al., 2004). Joint et al. (2011) suggested that high diversity
is one of the mechanisms employed by bacterioplankton resist to
elevated pCO2 and decreased pH. Besides, micro-organisms do
not live in isolation but form complex ecological interaction webs,
which are also closely related to community stability (Faust and
Raes, 2012). Changes global interactions (e.g. connectivity and
modularity) among bacterioplankton communities along the
pCO2 gradient were unclear in the present study (Table 2 and
Figure 2). These results suggested that the community interaction
webs were relatively stable, despite the pCO2 changes. In an
ecological network, a negative correlation suggests a competitive
relationship between species (Faust and Raes, 2012). The competi-
tion between species should yield less variation in total abundance

or biomass, known as compensatory dynamics (Gonzalez and
Loreau, 2009). A community with more competitors would be
more stable under environmental fluctuations through maintaining
relatively low covariations in community densities (Ives and
Hughes, 2002). Klug et al. (2000) conducted a microcosm experi-
ment and suggested strong compensatory dynamics when plankton
were directly affected by pH perturbations. Furthermore, the compe-
tition might increase both the amplitude and asynchrony of popula-
tion fluctuations generated by the asynchrony in species responses to
the environment, which is the basis for functional compensation
between species and potentially stabilizes aggregate community or
ecosystem properties (Loreau, 2010). Ecosystem modelling indicates
that asynchrony in species intrinsic rates of natural increase could
stabilize the community (Fowler et al., 2012). Therefore, the domin-
ant competitive relationships observed in our study (Figure 2) might
sustain population diversity and enhance ecosystem resilience to
perturbations.

Additionally, the high modularity observed in our study
(Table 2) might result in a more complex ecosystem that would be
more stable than dispersal ecosystems. Because of the tighter

Figure 3. pMEN submodules under nine different pCO2 treatments. Each dot represents an OTU from nine different pCO2 treatments (a–i
indicate pCO2 concentration from 175 to 1085 matm). The Z–P plot showing OTU distribution based on their module-based topological role
according to within-module (Z) and among-module (P) connectivity. The nodes of Zi . 2.5 and Pi , 0.625 are indicated as the module hubs that
were more closely connected within the module, while the nodes of Zi , 2.5 and Pi. 0.625 are the connectors that were more closely connected to
nodes in other modules. Peripherals of Zi , 2.5 and Pi , 0.625 are considered specialists in each module, while the network hubs of Zi . 2.5 and
Pi . 0.625 are super-generalists.
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interactions between nodes within the modules, the disturbances
that influenced these nodes were unlikely to spread to other
modules. For example, the OTU_1466 in the 175 matm pMEN
only connected with nodes within that module, hence the abun-
dance variation of OTU_1466 must affect more than two nodes to
spread this variation to other modules (Figure 2). The extinction
of a module hub might cause the module to fragment, having
little or no cascading impact on other modules. In contrast, the ex-
tinction of connectors might cause the network to fragment but with
minor impacts on the interactions within the isolated modules
(Olesen et al., 2007). Therefore, compared with a non-modular
structure, a modular structure should dampen the rapid spread of
disturbance in a community (Olesen et al., 2007). Since each
module in a pMEN indicates an ecological niche (Chaffron et al.,
2010), our observation that negative relationships dominated
between rather than within the modules suggested that the varia-
tions within a niche did not affect community stability. Therefore,
competitive relationships and the modular structure of bacterio-
plankton communities provided resistance to variations in pCO2

in the present mesocosm experiment. However, previous studies
have shown that interactions among soil bacterial communities
are influenced by elevated atmospheric CO2 over a longer time-scale
(i.e. annually; Zhou et al., 2010, 2011; Tu et al., 2015). Whether or
not marine bacterioplankton also respond to long-term pCO2

changes is worthy of investigation.
In an ecological network, the module hubs and connecters are

considered keystone species, which have a crucial role in sustaining
community stability (Paine, 1969). We found a relatively larger
proportion of Gammaproteobacteria and Flavobacteria in pMEN
module hubs and connectors in our study (Supplementary Figure
S5 and Table S4). The relative abundance of Gammaproteobacteria
and Flavobacteria did not change significantly among the pCO2

treatments (Roy et al., 2013; Supplementary Figure S6) and they
were not significantly correlated with geochemical variables under
elevated pCO2. Therefore, these stable keystone species likely provided
stability to the entire bacterial community. Monier et al. (2014) found
the relative abundance of two groups of Gammaproteobacteria
(Alteromonadales and Oceanospirillales) responded significantly to
variations in pCO2 in the north Arctic Ocean, but they did not
respond significantly to decreased pH in terms of general phylogenetic
structure. In our experiment, these potentially sensitive groups were
not the major components and only a few OTUs belonging to these

two Gammaproteobacteria groups were found in nine pMENs.
Furthermore, we did not observe a clear trend in the interaction
between the Gammaproteobacteria and their closest neighbours with
elevated pCO2 (Supplementary Figures S7 and S8).

Despite their general structure, bacterioplankton communities
were insensitive to elevated pCO2 in the EPOCA experiments,
the low abundance species had the potential to respond to
elevated pCO2. Roy et al. (2013) found that some rare species, like
Methylotenera, Fluviicola and Colwellia, were significantly corre-
lated with changes in pCO2. However, only a few of these bacterio-
plankton appeared within the nine pMENs in our analysis. For
example, Colwellia appeared in the high pCO2 treatment at the end
of the incubation period, but was almost non-existent before that
(Roy et al., 2013; Supplementary Figure S9). Because variations in
keystone species have a greater impact on ecosystem stability and re-
silience than rare species (Paine, 1969), we used the major compo-
nents of the bacterioplankton community to construct the networks.

Elevated pCO2 had increased the POC and dissolved organic
carbon (DOC) production by the end of the incubation period;
therefore, bacterial protein activity and production were also stimu-
lated (Motegi et al., 2013; Piontek et al., 2013). However, bacterial
production, respiration, and growth efficiency were similar over
the incubation period among the different pCO2 treatments,
which suggested that elevated pCO2 had little impact on bacterial
metabolism at the community level (Motegi et al., 2013). Previous
meta-analyses have found no evidence that bacterial community
growth efficiency is stimulated by elevated pCO2 (Liu et al., 2010;
Motegi et al., 2013). We did not find any significant correlation
between network topology and bacterial production (except for
the 675 matm treatment) and picophytoplankton abundance
change. These results suggested that primary production stimula-
tion had little influence on these keystone components. In fact,
the variations in DOC and POC production during the incubation
were greater those among the different pCO2 levels (Engel et al.,
2013). This is perhaps partially explained by the insignificant
network response to pCO2 among different mesocosms. However,
another possible reason is different bacterial assemblage living strat-
egies, i.e. free-living vs. particle-attached. Allgaier et al. (2008)
reported that the free-living fraction of a bacterioplankton commu-
nity was significantly correlated with elevated pCO2 in a temperate
fjord in Norway. However, the dynamics of the bacterioplankton
community particle-attached fraction, compared with the free-

Table 2. Topological properties of the microbial communities’ phylogenic molecular networks under nine pCO2 concentrations and their
rewired random networks.

pCO2

(matm)

Experimental networks Random networks

Cut-off
Total
nodes

Total
links

R2 of
power-law

Avg.
connectivity

Avg.
geodesic
distance

Avg.
clustering
coefficient Modularity

Avg. geodesic
distance

Avg.
clustering
coefficient

Avg.
modularity

175 0.85 86 187 0.843 4.349 4.088a 0.224a 0.452a 2.941+ 0.136 0.133+ 0.021 0.384+ 0.010
180 0.84 99 185 0.878 3.737 3.572a 0.177a 0.558a 3.153+ 0.178 0.076+ 0.018 0.454+ 0.011
250 0.84 108 315 0.836 5.833 2.281a 0.218a 0.330a 2.629+ 0.146 0.180+ 0.017 0.303+ 0.008
340 0.84 92 186 0.850 4.043 3.062a 0.213a 0.561a 3.642+ 0.153 0.157+ 0.023 0.442+ 0.011
425 0.84 116 226 0.850 3.897 2.773a 0.243a 0.592a 3.164+ 0.189 0.068+ 0.014 0.451+ 0.010
600 0.84 113 219 0.887 3.876 2.488a 0.079a 0.453a 2.909+ 0.227 0.068+ 0.013 0.442+ 0.009
675 0.84 100 215 0.801 4.300 2.692a 0.178a 0.465a 2.974+ 0.167 0.082+ 0.017 0.411+ 0.010
860 0.85 95 154 0.870 3.242 3.435a 0.148a 0.638a 3.275+ 0.256 0.047+ 0.015 0.513+ 0.015
1085 0.84 99 245 0.831 4.949 2.965a 0.293a 0.461a 2.838+ 0.114 0.141+ 0.019 0.357+ 0.010
aSignificant difference between experimental network and random network by the t-test (p , 0.001).
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living fraction, had a strong relationship with phytoplankton
bloom, and exhibited a higher richness at the end of the incubation
period in the EPOCA experiments (Sperling et al., 2013). The rich-
ness of the free-living fraction, however, decreased at the same time
(Sperling et al., 2013). Thus, we would expect that the networks
based upon entire bacterioplankton communities in the present
study could not reflect the response of particle-attached bacteria
to pCO2 changes. Additionally, the lower bacterial abundance
during this period combined with increased viral lysis in the
higher pCO2 mesocosm suggested top-down control on bacterial
production (Brussaard et al., 2013), which might also not have
reflected pMENs and suggested the importance of top-down
control during this experiment. Therefore, the network analysis
involved in both bacterioplankton and virioplankton, even zoo-
plankton, would provide a more comprehensive explanation of
the future effect of elevated pCO2 in the ocean.

A few studies have found that decreased pH significantly influ-
ences specific bacterial groups in various oceans (Krause et al.,
2012; Maas et al., 2013). However, their results were not consistent
with ours; this might have been because of the difference between
pH manipulations by HCl and CO2. Manipulation with HCl,
which modifies the total alkalinity (TA) and pH with constant dis-
solved inorganic carbon (DIC), is not the most accurate approach to
mimic future carbonate chemistry (Hurd et al., 2009; Krause et al.,
2012). In contrast, CO2 addition induces a pH decrease and DIC in-
crease when TA is constant (Hurd et al., 2009). Even the carbonate
chemistry parameters were similar between both manipulation
methods when pCO2 ,700 ppm (Hurd et al., 2009). However,
when pH was modified to 7.5 by HCl, the [HCO−

3 ] value was 22%
lower compared with the pH value obtained by pCO2 manipulation
(Hurd et al., 2009). The previous study has demonstrated that this
difference in DIC affects some algal groups, e.g. those lacking a
carbon-concentrating mechanism exhibited lower growth rate in
pH 7.5 by HCl manipulation compared with pCO2 manipulation
(Hurd et al., 2009). Yet, the impact of this difference on the bacter-
ioplankton is still unclear. Because mixotrophic micro-organisms
are widespread carbon in the world’s oceans (Hugler and Sievert,
2010), methodological differences may have affected the response
of bacteria to changes in pH. Thus, pCO2 manipulation is the
most appropriate method available to mimic future changes in
oceanic carbonate chemistry.

Conclusion
The hypothesis that “marine microbes possess the flexibility to
accommodate pH change” is primarily based on the observation
that microbial populations confront large variations in pH, both
short-term and seasonally, in marine environments (Joint et al.,
2011). This hypothesis is supported by recent studies at the micro-
bial community level (Allgaier et al., 2008; Newbold et al., 2012; Roy
et al., 2013; Sperling et al., 2013; Zhang et al., 2013). In combination
with the present study, these data suggest that a larger population
size and higher diversity within a microbial community contribute
to the resistance of communities to high pCO2. Additionally, our
network analysis provides further evidence that complex interac-
tions (e.g. interspecies competition and modularity) among indi-
vidual microbial species in a natural population help microbes
resist and recover from pH and pCO2 disturbances. This could
explain the contradictory observations between OA effects on
single species (e.g. pure culture) and natural marine microbe
populations.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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