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Analyses of fisheries data have traditionally been performed under the implicit assumption that ecological relationships do not vary
within management areas (i.e. assuming spatially stationary processes). We question this assumption using a local modelling technique,
geographically weighted regression (GWR), not previously used in fisheries analyses. Outputs of GWR are compared with those
of global logistic regression and generalized additive models (GAMs) in predicting the distribution of northern cod off
Newfoundland, Canada, based on environmental (temperature and distance from shore) and biological factors (snow crab and north-
ern shrimp) from 2001. Results from the GWR models explained significantly more variability than the global logistic and GAM
regressions, as shown by goodness-of-fit tests and a reduction in the spatial autocorrelation of model residuals. GWR results revealed
spatial regions in the relationships between cod and explanatory variables and that the significance and direction of these relationships
varied locally. A k-means cluster analysis based on GWR t-values was used to delineate distinct zones of species–environment relation-
ships. The advantages and limitations of GWR are discussed in terms of potential application to fisheries ecology.
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Introduction
Fisheries researchers are faced with the challenging task of studying
complex patterns and processes in marine resources that occur
over large spatial scales (Ricklefs, 1990). These processes are
often examined using population and environmental variables
averaged over management units, resulting in a single “global”
model applied to an entire study region (Ciannelli et al., 2008).
Although global models are useful for testing hypotheses, they
function under the assumption of spatial stationarity in the pro-
cesses under study, whereby the parameters of a process (e.g. var-
iance and mean) are independent of location and direction (Fortin
and Dale, 2005). Given the highly mobile nature of fisheries
resources and the dynamic spatial interactions between biological
and environmental variables in marine ecosystems (Ottersen et al.,
2004; Rose, 2005; Ciannelli et al., 2008), stationarity of these pro-
cesses may be the exception rather than the rule.

As the presence of spatial stationarity is required to make accu-
rate model inferences at unsampled locations (Fortin and Dale,
2005), it is important to investigate whether the influences of
environmental and trophic variables are relatively uniform
across a study area. One possible solution is the use of local
spatial statistics that highlight differences across space
(Fotheringham et al., 2002). A relatively new local spatial

technique that addresses both spatial heterogeneity (e.g. spatial
non-stationarity) and spatial dependence (i.e. spatial dependence
and spatial autocorrelation) in ecological data is geographically
weighted regression (GWR; Brunsdon et al., 1998). In contrast
to regression models that estimate one set of global parameters,
GWR estimates a set of local parameter coefficients for each obser-
vation point by specifically incorporating the geographic locations
of all sampled locations in the model (Dormann et al., 2007; Fortin
and Melles, 2009). Observations spatially closer to the location
being predicted are given more weight than those farther away.
GWR therefore provides a method of exploring how regression
model parameters vary across space (i.e. spatial non-stationarity
in the processes under study) and represents a spatial modification
to normal techniques, such as ordinary least-squares (OLS)
regression. Indeed, GWR outperforms other global methods
such as OLS, generalized linear models (GLMs), generalized addi-
tive models (GAMs), and linear mixed models in the context of
modelling animal and vegetation distributions in terrestrial
ecology (Zhang and Gove, 2005; Shi et al., 2006; Kupfer and
Farris, 2007; Osborne et al., 2007; Kimsey et al., 2008) and
shows promise as an exploratory tool for investigating spatial non-
stationarity in other ecological settings. To date, no studies have
been published that apply the GWR method to marine fisheries
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data. This represents an opportunity to explore the issue of spatial
non-stationarity of processes to shed light on the current state of
this ecosystem.

Here, we focus on the northern Atlantic cod (Gadus morhua)
stock as a case study for the exploratory GWR analysis.
Northern cod has been managed as a single stock within the
Northwest Atlantic Fisheries Organization (NAFO) Divisions 2J,
3K, and 3L (2J3KL) off the coast of Labrador and eastern
Newfoundland, although it is thought to consist of several sub-
populations (Lear and Parsons, 1993). After supporting one of
the world’s largest fisheries for nearly 400 years, the northern
cod stock experienced a dramatic decline from the 1960s to the
early 1990s to ,1% of its maximum historical biomass (Rose,
2007). In the aftermath of this collapse, many studies have
focused not only on the overfishing, but also on the underlying
environmental, trophic, and demographic processes that affect
the stock (Rose, 1993; Hutchings, 1996; Atkinson et al., 1997;
Drinkwater, 2002; Rice, 2002; Worm and Myers, 2003; Lilly,
2008). The relationships between species, fishing, and the environ-
ment have proven difficult to quantify and have resulted in uncer-
tainty in the basic ecological knowledge of recent changes, in
particular with respect to the current state of the ecosystem and
prognoses for stock rebuilding.

Our overall goal was to explore the GWR method as applied to
fisheries data. We compared the performance of GWR relative to
the more typically used global logistic regression model and
GAM in models of the distribution of northern cod based on
both environmental and biological variables. Environmental vari-
ables included depth, temperature, and salinity that are typically
strongly correlated, with all three structuring the distribution of
cod through physiological and ecological constraints (Rose,
2005). Biological variables included snow crab (Chionoecetes
opilio) and northern shrimp (Pandalus borealis), known prey of
Atlantic cod in the 2J3KL region (Sherwood et al., 2007). The
analysis uses data collected during the autumn multispecies
trawl survey of 2001. We adopted a logistic presence/absence
approach to the analysis of cod distribution for several reasons:
(i) cod, crab, and shrimp were not present in many areas, resulting
in zero-inflated distributions for each variable; (ii) where present,
cod catches were consistently very small, with little variance; and
(iii) the relationships between cod weight and the dependent vari-
ables were not consistently linear. Unlike OLS regression, logistic
regression does not assume a normal distribution for the variables
used. Moreover, GAMs allow modelling of non-linear relation-
ships between the dependent and independent variables through
the use of smoothing functions (Hastie and Tibshirani, 1990)
and are increasingly used in fisheries research for this reason
(Ciannelli et al., 2008). The specific goals of our study were to
(i) compare the performance of logistic GWR with global logistic
and binomial GAM regressions; (ii) examine spatial non-
stationarity in the localized regression coefficients; (iii) map the
parameter coefficients of GWR for interpretation; and (iv)
explore any zones of unique species–environment relationships
revealed by the GWR analysis.

Material and methods
Study area
The study area included some 520 000 km2 of continental shelf off
the east coast of Newfoundland and Labrador, encompassing the
historical distribution of the northern cod stock in NAFO

Divisions 2J3KL, except the coastal region (Figure 1).
Oceanographic conditions are primarily influenced by cold
Arctic water of the Labrador Current, which flows south over
the Labrador and northeast Newfoundland shelves and portions
of the Grand Bank (Colbourne et al., 1997). The bathymetry of
the continental shelf is characterized by relatively shallow banks
intersected by deeper channels and troughs. Mean annual
bottom temperatures range between less than 21.08C over
much of the Newfoundland Shelf and Grand Bank to .3.08C at
the edges of the banks and are strongly influenced by local bathy-
metry (Colbourne et al., 1997). In the region, distributions of cod
are generally highly aggregated during winter and spring when the
fish spawn, and more dispersed during summer and autumn, the
feeding periods.

Data sources
Fisheries data for the Newfoundland region were provided by the
Canadian Department of Fisheries and Oceans (DFO) and were
collected in 2001 during multispecies surveys conducted in
NAFO Divisions 2J3KL during the months October–December
(Figure 1). Surveys followed a stratified random design and
employed a Campelen 1800 Shrimp trawl. At each trawl location,
data were collected on the biomass and abundance of various
groundfish and shellfish species, and biological samples were
collected.

Atlantic cod were classified as present (1) or absent (0) based
on a threshold catch weight of 5 kg (5–10 fish) in each trawl.
The 5 kg threshold was used to avoid a small catch weight
having too much influence on the logistic regression and was
based on a frequency distribution of catch weights per trawl.
Average trawl catches of cod in the 2001 autumn multispecies
surveys, including the many zero catches, were low (2.22+
6.19 kg s.d.). Trawl catch weights (kg) of snow crab and northern
shrimp were standardized according to area swept (0.8 nautical
miles in 15 min with a wing spread of 16.84 m). Mean bottom
depth (m), temperature (8C), and salinity (psu) were recorded
during each trawl, and the approximate distance to shore (km)
from each trawl location was determined using a geographical
information system (GIS). Before the regression analyses, the
weights of crab and shrimp catches for each set were log-
normalized to adjust for their zero-inflated skewed distributions.

Statistical analyses
A global logistic regression equation takes the form

ln
y�

ð1� y�Þ

� �
¼ b0 þ

X
k

bkxk; ð1Þ

where y* is the predicted value of response variable y, b0 the inter-
cept coefficient, and bk the coefficient for the explanatory variable
xk (k ¼ 1, 2, 3, . . ., n). In a GAM, the coefficient bk is replaced by a
smoothing function, such that

ln
y�

ð1� y�Þ

� �
¼ b0 þ

X
k

fkxk; ð2Þ

where fk is a non-parametric function describing the effect of xk on
y*. We fitted a binomial GAM using a logit link function, with the
shape of the fk function determined by penalized regression splines
with automatic smoothness selection (Wood, 2006). All
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explanatory variables were fitted as smoothers to allow for possible
non-linear effects. GAM analyses were carried out in R (v. 2.8.1; R
Development Core Team, 2008), using the “mgcv” package
(v. 1.5-5; Wood, 2006).

The GWR model is essentially a modified global regression
which incorporates a set of geographic coordinates for each
location i, taking the form

ln
y�i

ð1� y�i Þ

� �
¼ b0i þ

X
k

bkixki
; ð3Þ

where b0i is the intercept parameter specific to location i, and bki is
the parameter coefficient of independent variable xk at location i.
Local variable coefficients in the GWR model are determined by a
weighting matrix that uses a distance-decay function, resulting in
local regression points being more influenced by observations
closer in space. The spatial kernel controlling the distance-decay
function can take either a fixed (distance) or adaptive (number
of samples) approach to establishing the radius of the local
GWR model, in effect creating a moving window regression for
each observation point in the study area (Fotheringham et al.,
2002). The size of the kernel bandwidth has a large impact on
the outcome of the GWR analysis and should be selected carefully.
Increasingly smaller bandwidths result in parameter estimates that
are highly localized and have a large degree of variance, whereas
increasingly larger bandwidths tend towards the normal global

regression estimates. In our study, a fixed Gaussian kernel was
used, where the weight of observation j to the ith regression
point was determined by

wij ¼ exp �
dij

b

� �2
" #

; ð4Þ

where dij is the Euclidean distance between the two observation
sites i and j, and b is the bandwidth in map units. The kernel band-
width was determined by minimizing the corrected Akaike’s
Information Criterion (AICc) for the fitted regression model.
The AIC is a relative goodness-of-fit statistic for comparing com-
peting models, where the model with the smallest AIC provides the
closest approximation to reality. For a more detailed overview of
the GWR technique, the reader is referred to Fotheringham
et al. (2002). The GWR analysis was performed with GWR 3.0
software (available at http://ncg.nuim.ie/ncg/GWR/index.htm).

The initial explanatory analysis of the environmental and bio-
logical variables was performed using a global logistic regression,
binomial GAM, and logistic GWR approach using mean depth,
mean bottom temperature and salinity, distance to shore, and log-
normalized crab and shrimp weight. Variable and model selections
were determined using the AICc (Fotheringham et al., 2002). Many
regression models were calculated using different combinations of
predictor variables, and AICc statistics were compared to assess the
goodness-of-fit for each model. As the environmental variables of

Figure 1. The continental shelf off Newfoundland and Labrador (with 200, 300, and 500 m contours identified), showing the locations of
NAFO Divisions 2J3KL. The inset shows the location of the study area. The shelf-scale presence (filled circles) and absence (plus signs)
distribution of Atlantic cod is shown, based on scientific survey trawl catches of cod .5 kg in autumn 2001.

Exploring spatial non-stationarity of fisheries survey data 147

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/67/1/145/595559 by guest on 10 April 2024



depth, temperature, and salinity are highly correlated, only one of
each was selected for model testing to reduce multicollinearity.
The GWR model with the smallest AICc was taken as the best rep-
resentation of reality and selected for further analysis.

Using the optimal model variables determined by AICc mini-
mization, global logistic regression, GAM, and GWR models
were calculated for the entire NAFO 2J3KL study area. The AICc

scores were compared to assess whether the local GWR model
was a significant improvement over the global logistic model
and the GAM for predicting cod occurrence. AICc differences
.3 are assumed to represent significant differences between two
models. We also calculated the area under the receiver operating
characteristic curve (AUC) to compare the ability of each model
to correctly predict cod presence and absence. The AUC statistic
is equal to the probability that a randomly chosen positive cod
occurrence will be ranked higher than a randomly chosen negative
one, and ranges in value between 0 and 1, with values of 0.5 cor-
responding to random chance (Zou et al., 2007).

To determine the spatial scale of non-stationarity in the local
parameter coefficients, additional GWR analyses were carried
out by increasing the fixed kernel bandwidth from a 100 to a
400 km search radius at 50 km increments. These bandwidths
were chosen to reflect a range of values around the AICc optimized
bandwidth. The variation in the regression coefficient for each
variable at each location was subsequently used as an approximate
index of stationarity (Brunsdon et al., 1998). This was accom-
plished by dividing the interquartile range of the GWR coefficient
by twice the s.e. of the same variable from the global logistic
regression. As �68% of the values are within 1 s.d. and 50% are
within the interquartile range, ratio values .1 suggest that the
relationship between the independent and dependent variables
might be spatially non-stationary. These index values were
plotted against the kernel bandwidth distances to examine at
what spatial scale the relationships became non-stationary.

Given that the errors for a well-fitted model are randomly dis-
tributed across a study region, the spatial fit of the global logistic,
GAM, and GWR models was examined using Moran’s I analysis of
the model residuals. Moran’s I coefficients between 0 and 1 indi-
cate positive spatial autocorrelation, negative coefficients
between 0 and 21 indicate dissimilar neighbouring values, and
those near 0 indicate weak or no spatial autocorrelation (Fortin
and Dale, 2005). Correlograms of Moran’s I coefficients in
20-km distance classes were generated to examine scales of
spatial autocorrelation in the residuals.

An advantage of GWR is its ability to map the local parameter
coefficients produced for each datapoint, as well as model diagnos-
tics, to visualize and interpret spatial non-stationarity in the
dataset. This can be challenging given the large amount of
spatial data produced by GWR, as well as the need to present sim-
ultaneously both the parameter estimates and their associated sig-
nificance (e.g. t-values) for accurate interpretation (Mennis, 2006).
Here, we mapped the spatial distributions of local r2 and GWR
parameter coefficients, applying a significant threshold of 95%
to mask out points where the relationship between cod and the
predictor variable was not significant.

In addition to the spatial analysis of single-parameter coeffi-
cients, it is also useful to examine whether there are any spatial
groupings of parameters with relatively homogenous values. For
example, these groupings might identify zones of distinct
species–environment relationships (Wimberly et al., 2008). A
k-means cluster analysis was used to separate the parameters

into different zones, using the t-values of the local GWR parameter
coefficients and with the number of clusters (k) set a priori to k ¼
2, 3, and 4. Average parameter coefficients for each cluster were
calculated, and the spatial distribution of the clusters was
mapped using a GIS. All maps were generated using ArcGIS
(ESRI, v. 9.3) software.

Results
The mapping of catches from the 2001 autumn survey in 2J3KL
revealed that cod were mostly inshore near the Avalon Peninsula
and offshore near the border between 3K and 3L (Figure 1).
There was a general absence of cod in shallower water as well as
in the northern part of 2J. These distributions correspond to the
known locations of remaining populations of cod within the
stock’s range (DFO, 2002; Rose, 2003).

Based on AICc minimization scores, the model that best
approximated reality for the GWR method included the variables
of temperature, distance to shore, and crab and shrimp weight
(AICc ¼ 271.4). The AICc values for the equivalent global logistic
regression (323.4) and binomial GAM (313.8) were significantly
higher. AICc scores for GWR were lower than those for the
global logistic regression by a range of 16–52, indicating that
GWR resulted in a significantly better fit for all tested combi-
nations of variables. For subsequent analysis, we elected to con-
tinue with the variables temperature, distance to shore, and crab
and shrimp weight to generate logistic, GAM, and GWR models
for the entire 2J3KL region. The results of the global logistic
model suggested that, throughout the study area, crab had a sig-
nificant negative association and distance from shore a weak nega-
tive association with cod, whereas shrimp had a stronger positive
association and temperature a weaker positive relationship
(Table 1). Descriptive statistics for the local parameter coefficients
produced by GWR revealed much variance in the parameter values
(Table 2), suggesting the presence of spatial non-stationarity in the
relationships between cod distribution and the explanatory vari-
ables. The temperature, distance-from-shore, and crab variables
had both negative and positive parameter values, although temp-
erature was mostly positive and the distance and crab variables
were mostly negative. In contrast, all parameter values for the
shrimp variable were 100% positive (Table 2). The GWR model
was an improvement over the global logistic and GAM regressions
for predicting cod presence/absence, as indicated by the signifi-
cantly lower AICc score and higher AUC value (Table 3). The pro-
portion of variance explained by the local GWR models for each
location i was higher (r2 ¼ 0.11–0.26) than the global measures
for both the global logistic (r2 ¼ 0.013) or GAM (0.072) models
(Table 3). Spatial mapping of the local pseudo-r2 values suggested
that the GWR models had greater explanatory power nearshore,
but performed worse in the 2J area (Figure 2).

Table 1. Parameter estimates for the global logistic regression
model.

Variable B s.e. t-value Exp(B)

Intercept 21.769 0.346 25.108 0.171
Temperature 0.058 0.120 0.486 1.060
Distance 20.000001 20.000001 21.827 1.000
Crab 20.407 0.187 22.183 0.665
Shrimp 0.145 0.078 1.869 1.156
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The AICc optimized bandwidth for the GWR model was
212 km. By varying the bandwidth of the GWR model, we noted
that predictor variables became spatially stationary at different
scales (Figure 3). The results suggested that the temperature com-
ponent of the model became stationary beyond 150–200 km,
whereas shrimp was non-stationary up to �250 km. The crab
component of the model remained non-stationary up to a band-
width of 300 km (Figure 3).

The global Moran’s I analysis of model residuals confirmed the
improved performance of GWR over the global methods. Weak
non-significant spatial autocorrelation was detected in the
residuals from the logistic regression (Moran’s I ¼ 0.11; p ¼
0.24) and GAM (Moran’s I ¼ 0.067; p ¼ 0.48), and the GWR
model residuals had a completely random spatial pattern
(Moran’s I ¼ 0.002; p ¼ 0.97). Global Moran’s I coefficients
were plotted against lag distance to examine any spatial patterns
in the residuals (Figure 4). The global logistic and GAM residuals
showed significant positive spatial autocorrelation up to �80 km,
but there was no significant positive spatial autocorrelation for the
GWR residuals, except for a lag distance of 50 km (Figure 4).
Global logistic, GAM, and GWR residuals resulted in similar
spatial patterns, although the global residuals were larger in both
negative and positive directions.

Model performance and non-stationarity were also explored
visually by mapping the local coefficient estimates of the tempera-
ture, distance-from-shore, snow crab, and shrimp variables pro-
duced by GWR. Parameter estimates varied spatially according
to both the locations where they had a significant association
with cod presence and the direction (negative or positive) of this
relationship (Figure 5). The relationship between cod and temp-
erature was mostly non-significant throughout the study area,
except a moderate positive relationship at the eastern edge of the
Grand Bank (3L) and an inshore area in 3K (Figure 5a).
Distance from shore had a weak negative association with cod
presence/absence in most of 3K and all of 3L, with a pronounced

inshore/offshore gradient indicating that more cod were likely to
be inshore in these areas (Figure 5b). A stronger negative crab–cod
relationship was found in the south and in most nearshore areas,
with the relationship becoming weaker with increasing distance
from shore (Figure 5c). Crab did not have a significant association
with cod in 2J or northern 3K, as well as at the eastern tip of the
Grand Bank. The relationship with shrimp was significant and
positive throughout the entire study area, with the highest par-
ameter estimates in the north and along the edges of the continen-
tal shelf (Figure 5d).

The k-means cluster analysis revealed distinct latitudinal zones
of species–environment effects on cod distribution (Figure 6). A
northern zone was identified (Cluster 2) and was characterized
by stronger positive relationships with crab and shrimp, and a
weak positive relationship with distance from shore (Table 4;
Figure 6). That zone remained spatially consistent through all
cluster analyses. A distinct latitudinal band (Cluster 2) also
emerged extending from White Bay in 3K along the southern
edge of Cluster 1 for both three- and four-cluster analyses
(Figure 6). A third zone (Cluster 3) was characterized by a rela-
tively strong negative relationship with crab. A final zone
emerged at the eastern tip of the Grand Bank (Cluster 4) that
was differentiated from Cluster 3 by a stronger positive relation-
ship with temperature and a weaker negative relationship with
crab (Table 4). Average shrimp parameter estimates were most
useful for distinguishing the northern zone (Cluster 2) and had
similar values in all other zones.

Discussion
We found that relationships between Atlantic cod and both abiotic
and biotic variables that influence distribution could be investi-
gated over multiple spatial scales by incorporating geographic
information into GWR analyses. The improved performance of
GWR over the global logistic and GAM regression models was
demonstrated by significantly lower values of AICc and deviance
as well as an improved non-spatial AUC score. An additional
strength of the GWR method was the ability to explore spatial
variability in the relationships between cod and explanatory vari-
ables by mapping the variation in local parameter coefficients.
GWR revealed spatial non-stationarity in the relationships
between cod and temperature, distance from shore, crab, and
shrimp weight, and that the significance and direction of these
relationships varied throughout the entire 2J3KL study area.
Overall, the results highlight the limitations of using a single set
of global parameters to model the distribution of a species in a
large marine ecosystem.

Non-stationarity of ecological processes is not a new concept in
fisheries science (Walters, 1987), although it has almost exclusively
been associated with temporal (rather than spatial) variation in
species–environment relationships. By shifting the GWR

Table 2. Summary statistics of the logistic GWR parameter estimatesa, including the overall percentage of negative (% –) and positive
(% þ) values.

Variable Minimum Lower quartile Median Upper quartile Maximum % 2 % 1

Intercept 28.63 23.99 22.00 21.04 0.22 97.3 2.7
Temperature 20.05 0.28 0.32 0.40 0.58 1.5 98.5
Distance 20.000012 20.000009 20.000007 20.000006 0.000016 84.8 15.2
Crab 21.49 20.68 20.46 20.02 0.89 76.9 23.1
Shrimp 0.16 0.22 0.30 0.41 0.48 0.0 100.0
aAICc optimized bandwidth of 212 km.

Table 3. Comparison of fit for global logistic, GAM, and logistic
GWRa models applied to the distribution of Atlantic cod off the
coast of Newfoundland in 2001, with the range of pseudo-r2 values
for the GWR model provided.

Model n ke

22 log
likelihood AICc AUC+++++ s.e. r2 (adj.)

Global logistic 481 5.0 313.3 323.4 0.65+ 0.038 0.013
GAM 481 5.0 290.2 313.7 0.73+ 0.038 0.072
GWR 481 12.4 245.7 271.4 0.87+ 0.023 0.1120.26

n, number of observations; ke, effective number of parameters; AICc,
corrected Akaike’s Information Criterion; AUC, area under the receiver
operating characteristic curve.
a212 km bandwidth.
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bandwidth, we were able to detect variability in the spatial statio-
narity of the relationship between cod, temperature, and crus-
tacean prey. This was perhaps expected given that spatial
predator–prey associations can vary with scale (Rose and

Leggett, 1990; Ciannelli et al., 2008) and geographic location,
depending on alternative prey distributions (Sherwood et al.,
2007). The relationship between cod and temperature was the
most spatially stable, whereas the relationship with crab proved
to be spatially inconsistent up to large bandwidths (300 km).
These results suggest that the observed spatial patterns of cod in
the 2J3KL region are determined by ecological factors acting con-
currently at different spatial scales.

Although the use of a single year’s data to demonstrate the
GWR methodology on fisheries survey data does not merit
much ecological interpretation, a few comments may be in order
to help assess the present results and their potential. It is useful
to first examine the spatial context of the variables used in this
analysis. The seasonal distribution of the northern cod stock has
been described in many studies in relation to the geography of
the continental shelf (Atkinson et al., 1997), oceanographic vari-
ables (Rose, 1993; Rose et al., 1994), and prey species (Rose,
1993; Lilly et al., 2000; Rose and O’Driscoll, 2002), all of which
provide context for the main finding of non-stationarity in the
relationship between cod distribution and environmental factors.
For example, shrimp are primarily distributed offshore north
and east of the Grand Bank (DFO, 2008), whereas snow crab are
found over a broad range of depths and more inshore, particularly
in 3K and 3L (Dawe and Colbourne, 2002). Shrimp and crab
indices were the strongest predictors of cod distribution, as
found by both global and GWR methods. In 2001, the year cur-
rently analysed, expanding populations of shrimp had largely
replaced capelin as the primary prey item for cod in offshore
regions of 2J3KL, especially in the north (Rose and O’Driscoll,
2002; Sherwood et al., 2007), and this likely explains the stronger
positive relationship between cod and shrimp in the 2J region. The
largely negative GWR coefficients between cod and snow crab
throughout the study area are not so easily explained, but could

Figure 2. Mapped local pseudo-r2 values from the GWR models of cod presence/absence in the NAFO 2J3KL region for autumn 2001.

Figure 3. Index of spatial stationarity for variables used in the GWR
models for the occurrence of Atlantic cod in NAFO Divisions 2J3KL.
The index is calculated by dividing the interquartile range of a GWR
regression coefficient by twice the s.e. of the same parameter
estimate from the global model. Spatial non-stationarity is suggested
by index values .1.
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Figure 4. Correlograms of global Moran’s I values for residuals of the global logistic (circles), binomial GAM (triangles), and logistic GWR
(squares) models of cod occurrence in NAFO Divisions 2J3KL for the year 2001. Filled symbols indicate significant spatial autocorrelation (p ,
0.05).

Figure 5. GWR-derived local coefficient estimates for (a) temperature, (b) distance from shore, and (c) snow crab and (d) shrimp as predictors
of cod presence/absence in the 2J3KL region for autumn 2001. Positive values are shown as filled circles and negative values as unfilled circles.
A significant threshold of 95% was used to mask out points where the relationship between cod and the predictor variable was not significant
(plus signs).
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relate to autumn migration patterns of cod or to gear selection for
large male crab differing from cod selection for smaller females or
could be spurious based on a single year’s data. The mostly non-
significant relationship with temperature may have been a conse-
quence of the dispersal of cod during autumn (Rose, 1993) and

low population size and spatial contraction both offshore
(Atkinson et al., 1997) and inshore (Rose, 2003), eliminating
region-wide trends. That the GWR method can illustrate both
plausible results and raise questions that potentially can be
answered is reason to pursue such spatial analyses of species–
environmental interactions.

Our cluster analysis of parameter coefficients characterized
zones of unique spatial associations between covariates at the
time of the survey. Wimberly et al. (2008) achieved similar
results in a large-scale terrestrial study of tick-borne pathogens
and suggested that a unique model could be applied to each
zone to improve predictions at unsampled locations. For
example, in the current study, 2J and 3L appear to represent
unique zones at two- and three-cluster analyses, with a transition
in 3K. These zones would undoubtedly be refined with the
inclusion of additional explanatory variables, yet still suggest
that both global and local models would benefit from spatial par-
titioning of the data.

This study achieved similar results to previous GWR models
applied to forestry data (Zhang and Shi, 2004; Kupfer and
Farris, 2007; Kimsey et al., 2008) and terrestrial species (Foody,
2004; Shi et al., 2006; Osborne et al., 2007; Wimberly et al.,
2008), in which GWR was shown to be a significant improvement
over global regression techniques. The lack of spatial patterns in
the GWR model residuals suggests that this technique successfully
corrected for spatial autocorrelation in the data, which is typically
present given the patchy distribution of marine species and
environmental gradients (Pennington, 1996; Ciannelli et al.,
2008). Both the global and local models performed poorly in dis-
tinguishing areas where cod were absent. This may again be related
to the low population status and contracted distribution of the
northern cod stock in the data used, or perhaps missing variables
from the analysis. Mapping of the pseudo-r2 values from the local
models also suggested regional variability in the proportion of var-
iance explained by GWR. Fotheringham et al. (2002) note that the
local r2 statistic needs to be interpreted with caution, as the per-
formance of each local model near a regression point i may
change if the processes under study exhibit some degree of
spatial non-stationarity.

Fisheries models are faced with the inherent difficulty of pre-
dicting the distribution of mobile fisheries resources in a
dynamic marine environment, with processes that operate on
different spatial and temporal scales (Ricklefs, 1990). These chal-
lenges are confounded further in cases when stocks have under-
gone rapid changes in abundance and spatial distribution. The
results here appear to be sufficiently informative to warrant
more comprehensive application and enhancement of these tech-
niques in fisheries. Nevertheless, improvements are no doubt feas-
ible. For example, although the predictive power of the present
GWR model based on four variables (temperature, distance to
shore, shrimp, and crab indices) was a significant improvement
over the global logistic regression and GAM, it still failed to
account for cod distributions in some areas, suggesting that
other influential factors were not accounted for. For example,
data on capelin (Mallotus villosus), a key prey of cod in the
region (Rose and O’Driscoll, 2002), were not available.
Moreover, oceanographic variables such as temperature may not
always consistently predict cod distribution when other ecological
factors take precedence, as in the case when cod leave preferred
thermal paths to pursue prey (Rose, 1993). Therefore, perhaps
there may be non-additive effects of environmental and trophic

Figure 6. Mapped results of k-means cluster analyses of the pseudo
t-values from the logistic GWR models, for three clusters, (a) k ¼ 2,
(b) k ¼ 3, and (c) k ¼ 4.
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variables in the GWR model, a common issue when modelling
fisheries data (Ciannelli et al., 2008). Additional improvements
to predictions might come from recognizing the strong association
between predator size and prey selectivity, with medium-sized cod
(30–70 cm) tending to feed on pelagic prey and larger cod
(.70 cm) selecting a greater proportion of invertebrates in their
diet (Sherwood et al., 2007). One of the strengths of local spatial
methods such as GWR is that an analysis of the spatial variation
in model performance and regression coefficients may help
improve both model specification and enhance understanding of
the spatial processes under study.

Although having many advantages, GWR should be used with
some caveats. Owing to the local nature of parameter estimates,
the GWR model cannot be used to predict species distributions
outside the study area. The overall distribution patterns of the par-
ameter estimates may also be indicative of model misspecification
(Fotheringham et al., 2002). Attention should be given to possible
collinearity in the local regression coefficients, which may limit
interpretation of their distributional patterns (Wheeler and
Tiefelsdorf, 2005), as well as any curvilinear relationships, which
may produce false results of non-stationarity (Austin, 2007).
Given these limitations, GWR has been recommended as a sup-
plementary exploratory tool with global regression methods to
investigate how relationships between variables can vary across a
landscape (Fotheringham et al., 2002).

In conclusion, although useful in terms of testing general the-
ories of ecological relationships, the common practice of averaging
population and environmental data over large geographic regions
to build global predictive models has the disadvantage of poten-
tially masking local variability in the processes being studied
(Fortin and Dale, 2005). The results of the current study indicate
this to be true in marine as well as in the more commonly studied
terrestrial ecosystems. This spatial non-stationarity can hamper
efforts to achieve meaningful interpretation of ecological studies.
Non-parametric statistical methods are increasingly being used
in studies of fisheries ecology, in recognition of the fact that eco-
logical data often do not meet the assumptions of normal distri-
bution and linear relationship (Haddon, 2001; Ciannelli et al.,
2008; Espeland et al., 2008), and GWR represents a relatively
new tool to explore the parametric assumption of spatial stationar-
ity. Our relatively simple analysis, the first GWR application to
fisheries of which we are aware, was able to reveal significant
local variation in the species–environment relationships under
study and illustrates the potential for the GWR method in analyses
of fisheries data, particularly for understanding and predicting the
spatial dynamics of large marine ecosystems. To that end, an
expanded study is planned to explore the full time-series of

fisheries data for the Newfoundland region using GWR and
additional abiotic and biotic variables.
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