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The increased computational demands of modern statistical stock assessment models have
made the standard methods to provide uncertainty estimates for forward projections imprac-
tical for timely results in many applications. However, forward projections and their asso-
ciated estimates of uncertainty are an important and popular piece of management advice.
We describe a less computationally intense method to estimate uncertainty in forward pro-
jections that includes both parameter uncertainty and future demographic stochastic uncer-
tainty. This frequentist method uses penalized likelihood as an approximation to mixed
effects and can be viewed as treating the future projection period as part of the estimation
model rather than performing stochastic projections. This allows confidence intervals to be
calculated using normal approximation based on the delta method. The method is tested us-
ing simulation analysis and compared with Bayesian analysis and with projections based on
point estimates of the parameters. The method is applied to yellowfin tuna in the eastern
Pacific Ocean.
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Introduction

Modern quantitative methods used to assess the status of

commercial fisheries have become very complex and compu-

tationally intensive (Quinn, 2003). Such methods are usually

statistically non-linear, and can have hundreds or thousands

of parameters (e.g. Fournier et al., 1998; Hampton and Four-

nier, 2001; Butterworth et al., 2003; Maunder and Watters,

2003). Sophisticated iterative non-linear function optimizers

are needed to estimate the model parameters and to provide

management advice. These analyses often take days to esti-

mate parameters, which limit the number and type of analy-

ses that can be performed. For example, only a limited

number of sensitivity analyses can be performed to investi-

gate a model’s robustness to structural assumptions.

A current trend in fisheries stock assessment is to estimate

and present uncertainty (Francis and Shotton, 1997; Punt

and Hilborn, 1997). Consideration of uncertainty is essential

when making management decisions and is particularly im-

portant for applying the precautionary approach to fisheries
1054-3139/$32.00 � 2006 International Cou
management. There are several methods that can be used to es-

timate uncertainty (Hilborn and Mangel, 1997). Three of the

most common, profile likelihood, bootstrap, and Bayesian

analysis, are computationally intense. The profile likelihood

and bootstrap methods require the objective function to be op-

timized numerous times, while Bayesian analysis often re-

quires model equations to be calculated millions of times.

Because of limited availability of computational resources,

these methods are not practical for complex stock assessment

models, and less computationally intense methods are re-

quired. For example, the normal approximation method based

on the delta method is often used (Fournier et al., 1998). These

methods are traditionally used only to estimate uncertainty in

model parameters and current and historical stock status.

A common piece of scientific advice considered in fish-

eries management is the predicted outcome of future man-

agement actions and the uncertainty in these predictions.

This requires projecting the population into the future. Un-

like estimates of model parameters and historical biomass,

estimates of uncertainty for forward projections should also
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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include stochastic variation of demographic processes in

the future (e.g. annual variation in recruitment caused by

environmental stochasticity). However, the main methods

used to represent the full uncertainty, both parameter and

demographic, the bootstrap and Bayesian analysis, are too

computationally intense for complex stock assessment

models. Less computationally intense methods that are

used are often inadequate. For example, methods that

project from parameter point estimates ignore parameter

uncertainty, which can, in some cases, represent the major-

ity of the uncertainty. Other methods ignore future demo-

graphic uncertainty (Gavaris, 1993).

Here we describe a method for calculating uncertainty in

forward projections that includes both parameter and demo-

graphic uncertainty that is much less computationally inten-

sive than the bootstrap and Bayesian analysis. This

frequentist method uses penalized likelihood as an approxi-

mation to mixed effects, and can be viewed as treating the fu-

ture projection period as part of the estimation model rather

than performing stochastic projections. This allows confi-

dence intervals to be calculated using normal approximation

based on the delta method, as would be done for historical

biomass. This method is in the flavour of the likelihoodist

framework of statistics (Tanner, 1993; Royall, 1997), an al-

ternative to Bayesian and frequentist (e.g. bootstrap) frame-

works. However, it can also be used in a frequentist or

objective Bayesian context (Schweder and Hjort, 2002). It

extends Gavaris’ (1993) ‘‘Function of Parameters Method’’

to include future uncertainty in recruitment and catchability.

We use simulation analysis to investigate and test the method

and to compare the results with the results of Bayesian anal-

ysis and with forward projections from point estimates of the

model’s parameters. The method is applied to yellowfin tuna

(Thunnus albacares) in the eastern Pacific Ocean.

Methods

Random effects

To understand the methods introduced in this paper, it is im-

portant first to understand the concept of random effects in

statistics. Traditional parameters of a stock assessment model

are assumed to be fixed effects (e.g. the carrying capacity of

a surplus production model), i.e. to have an unknown but

fixed true value (Pawitan, 2001). Uncertainty in these param-

eters comes about by incomplete information in the data. For

prediction, the true value of these parameters does not

change. In contrast, parameters that are considered random

effects may change for predictions (i.e. the value for the pre-

diction may differ from the estimate and among predictions).

An obvious example of a random effect in fisheries stock as-

sessment models is annual recruitment, which differs from

year to year. Another example is process error in the relation-

ship between fishing mortality and effort (i.e. catchability).

Inclusion of random effects in an estimation model might be

somewhat confusing. Take, for example, the annual deviations

in recruitment. For each year, there will be a realized value for
the recruitment deviation. This will be a number, and it is not

a random variable when the year has been completed. How-

ever, because recruitment is not directly observed, there is

no direct measurement of the deviation. Information about

the deviation comes from other data (e.g. catch-at-age data).

When random effects are included in an estimation model,

they have additional contextual information attributed to

the distributional assumption made for the random effect

(Pawitan, 2001). Even in the absence of data about these pa-

rameters, there is information available from the distributional

assumption. One way to view random effects in estimation

models is as a method to deal with large numbers of parameters,

i.e. the realized values of all random effects (Pawitan, 2001),

or a way to share information among parameters.

When viewed conditional on the values of unobserved

random effects, the likelihood of observed data is a function

of all parameters and the hypothetical values of the random

effects. To obtain the likelihood function in the fixed ef-

fects, including possibly parameters for variances of ran-

dom effects, this conditional likelihood can be averaged

over the joint distribution of the random effects. The

same averaging is not possible for fixed effects because

they do not have a distributional assumption.

If both the estimated parameters and the predictions are

treated as random effects, there is no difference between

the two. Therefore, by way of an example, if recruitment

in a stock assessment model is treated as a random effect, fu-

ture recruitments (predictions) are no different from histori-

cal recruitments. We exploit this to include demographic

uncertainty in projections using a less computationally

intensive method than those often used. Unfortunately, the

appropriate method to deal with random effects, integration

across the random effects, is often not practical for the

type of non-linear dynamic models used for stock assess-

ment (see Maunder and Deriso, 2003). Therefore, using an

approach traditional in fisheries stock assessment, we ap-

proximate a mixed effect model using penalized likelihood,

the penalty being based on the random effect distributional

assumption. This approach is equivalent to maximizing the

posterior density with a normal prior on the random effects

parameters and uniform priors on the fixed effect parameters.

In some cases it is possible to obtain reasonable estimates of

the standard deviation of the random effects distribution

using penalized likelihood, but this estimator is negatively

biased and inconsistent (Berger et al., 1999; Maunder and

Deriso, 2003). Therefore, if practical, integrating out the ran-

dom effects parameters is the appropriate method to estimate

the standard deviation (Maunder and Deriso, 2003).

Stock assessment model

For illustrative purposes, a simple catch-at-age stock as-

sessment model is developed. The model is age-structured

with two fisheries. Recruitment is related to stock size using

a BevertoneHolt stock-recruitment relationship. The model

is fitted to total catch and catch-at-age data for each year
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and fishery. Catch is predicted on the basis of known effort,

following Fournier et al. (1998).

The population is assumed to be in an unexploited equi-

librium at the start of the modelling time period:

N1;a ¼ R0 exp½ �Mða� 1Þ�; ð1Þ

with the last age (A) acting as an accumulating plus group

N1;A ¼
R0 exp½ �MðA� 1Þ�

1� expð�MÞ ; ð2Þ

where Nt,a is the number of individuals at time t in age class

a, M the natural mortality rate, and R0 is the average

recruitment in an unexploited population.

Recruitment at age one is assumed to follow the

BevertoneHolt stock-recruitment relationship:

Ntþ1;1 ¼
St

aþ bSt

exp
�
3R;t � 0:5s2

R

�
ð3Þ

a¼ S0ð1� hÞ
4hR0

ð4Þ

b¼ 5h� 1

4hR0

ð5Þ

St ¼
X
a

Namawa; ð6Þ

where 3R,t is the annual iid N(0,s2
R) recruitment deviate for

year t, �0.5s2
R the lognormal bias correction factor that

makes the expected recruitment equal to the stock-recruitment

relationship (otherwise the median recruitment would be

equal to the stock-recruitment relationship), h the recruit-

ment as a proportion of R0 achieved when the spawning

biomass (St) is 20% of the average spawning biomass in

an unexploited population (Francis, 1992), S0 the spawning

biomass for an unexploited population, wa the weight at age

a, and ma is the proportion mature at age a.

The abundance is modelled using a simple exponential

decay model, which is a function of fishing mortality

(Ft,a) at time t and age a and natural mortality (M ), which

is constant over time and age:

Ntþ1;aþ1 ¼Nt;a exp½ � ðFt;a þMÞ�; ð7Þ

with the last age (A) acting as an accumulating plus group:

Ntþ1;A ¼Nt;A�1 exp½ � ðFt;A�1 þMÞ�
þNt;A exp½ � ðFt;AþMÞ�: ð8Þ

Fishing mortality is assumed to be separable into age-

and time-specific components and proportional to effort.
Fishing mortality is allowed to vary from this relationship

using an annual estimated deviate that is penalized using

a distributional assumption (Fournier et al., 1998):

Fg;t;a ¼ qgEg;tsg;a exp
h
3E;g;t � 0:5s2

E;g

i
ð9Þ

Ft;a ¼
X
g

Fg;t;a; ð10Þ

where sg,a is the selectivity of individuals in age class a to

gear g, Eg,t the effort in time t for gear g, qg the catchability

coefficient for gear g, 3E,g,t the effort deviate for gear g in

year t, �0.5s2
E,g the lognormal bias correction factor for

gear g, and sE,g is the standard deviation of the logarithm

of the annual effort deviates for gear g.

The following describes the objective function used to

fit the model to the data. L is used to represent the likeli-

hood and P is used to represent a prior distribution or pen-

alty. The model is fitted to catch data in weight assuming

that the observed catch (Cobs) is lognormally distributed

around the expected catch (C ) with negative log-likelihood

(ignoring constants):

�ln L
�
q
��Cobs

�
f
X
g;t

½lnðCobs
g;t Þ � lnðCg;tÞ�

2

2s2
C;g

ð11Þ

Cg;t ¼
X
a

C0g;t;awa ð12Þ

C0g;t;a ¼
Fg;t;a

Ft;a þM
Nt;a½1� expð�Ft;a �MÞ�; ð13Þ

where Ft;a ¼
P

g Fg;t;a; C0g,t,a is the catch in number of

individuals from age class a in time t for gear g, and q

represents the model parameters.

The model is fitted to catch-at-age data using a multino-

mial-based negative log-likelihood (ignoring constants):

�ln L
�
q
��Cobs

�
f�

X
g;t;a

Cobs
g;t;a lnðpg;t;aÞ ð14Þ

pg;t;a ¼
C0g;t;aP
a

C0g;t;a
: ð15Þ

Abundance information for catch-and-effort data is mod-

elled using a penalty on the annual effort deviates (ignoring

constants and assuming that sE,g is known; see Fournier

et al., 1998):

�ln Pð3EÞf
X
g;t

32
E;g;t

2s2
E;g

: ð16Þ
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The size of sE,g determines how much influence the

catch-and-effort data for gear g has on the biomass esti-

mates. In general, if sE,g is small, the estimated biomass

changes to predict the observed catch; if sE,g is large, the

estimated fishing mortality, through more flexibility in

3E,g,t, changes to predict the observed catch.

A penalty is included based on the assumption that

recruitment is lognormally distributed around the stock-

recruitment relationship (ignoring constants):

�lnPð3RÞfn lnðsRÞ þ
X
t

32
R;t

2s2
R

; ð17Þ

and is equivalent to a prior on the annual recruitment devi-

ate 3R,t. Here, sR is the standard deviation of the logarithm

of the annual recruitment deviates and n is the number of

time periods. Unlike the penalty for the effort deviates,

we have to include the term ln(sR), because sR is estimated.

The model estimates the values of R0, 3R,t, 3E,g,t, sR, h,

and qg. The values for sg,a, M, wa, sE,g, and ma are assumed

to be known (Table 1). To aid the estimation procedure, sR

was restricted between 0.2 and 2.0. This is because the

global maximum likelihood (without integration over 3R)

is at sR¼ 0, but for informative data, there is a local max-

imum around the true value (Maunder and Deriso, 2003).

Normal approximation

We here present a method where the demographic uncer-

tainty in forward projections that is traditionally represented

by randomly selecting these parameters from the appropriate

distribution is represented by parametric uncertainty. This

approach extends Gavaris’ (1993) ‘‘Function of Parameters

Method’’ to include future uncertainty in recruitment and

catchability. This frequentist method uses penalized

Table 1. Parameter values used in the simulator and the estimator.

If a value for a parameter is assumed for the estimator it is set equal

to the value for the simulator.

Parameter Simulator value Estimated

R0 1 000 y

3R N(0,sR) y

3E,1 N(0,sE,1) y

3E,2 N(0,sE,2) y

sR 1.0 y

h 0.6 y

q1 0.1 y

q2 0.05 y

sE,1 0.4 n

sE,2 0.6 n

sC,1 0.07 n

sC,2 0.07 n

s1, s2 Table 2 n

M 0.3 n

w Table 2 n

m Table 2 n
likelihood as an approximation to mixed effects, and can

be viewed as treating the future projection period as part

of the estimation model, rather than performing stochastic

projections. This allows confidence intervals to be calculated

using normal approximation based on the delta method, as

would be done for historical biomass. The normal approxi-

mation method is implemented by extending the timeframe

of the model for estimation to include the future. As for

the past, recruitment for the future, which can be viewed

as a random effect, is estimated as an annual deviate with

a prior distribution (penalty). The prior distribution is the

same as used in the historical period, and it describes the un-

certainty in future recruitment. However, there are no data in

the future to provide information about recruitment. The

only additional data included in the model are those related

to the effort assumed in the future. Effort deviates for the fu-

ture, which can be viewed as a random effect, are also esti-

mated with the same prior used in the historical period.

The parameters of the stock assessment model are estimated

using penalized maximum likelihood estimation (MLE),

with the addition of the recruitment deviate and effort deviate

penalties to approximate the mixed effect model. This is

equivalent to finding the mode of a joint posterior distribu-

tion with locally uniform priors on all other parameters.

The confidence intervals for the future abundance are

calculated using normal approximation and the delta

method (Ratkowsky, 1983; see Dupont, 1983, and Fournier

et al., 1998, for examples of the use of this method in fish-

eries applications). Assuming that the MLE is asymptoti-

cally efficient, the Cramér-Rao lower bound can be used

as an approximation to the true variance of the MLE

(Casella and Berger, 1990):

dVar
�
f
�bq���q�� vfðqÞ

vq
jq¼q̂ I

�1vfðqÞ
vq

T

jq¼q̂; ð18Þ

where I ¼ �
�
v=vqivqj

�
log LðqjXÞjq¼q̂, f(q) is the quantity

of interest, here future abundance, defined as a function of

the parameters of the model q, and X is the data. The esti-

mate of the variance can then be used based on asymptotic

and regularity conditions to form the confidence interval

(Casella and Berger, 1990) based on the normal

distribution:

f
�bq�� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var
�
f
�bq���q�q

� fðqÞ

� f
�bq�þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var
�
f
�bq���q�

q
:

ð19Þ

These confidence intervals with a¼ 0.05 and z¼ 1.96

are used to represent the 95% projection interval of future

abundance. We define the projection interval as the interval

where there is a 95% probability that the true future value

lies within this interval. The frequentist-based confidence
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interval is used as an approximation of the projection

interval.

Bayesian analysis

We use Markov Chain Monte Carlo (MCMC) to estimate the

joint posterior distribution of model parameters (see Punt

and Hilborn, 1997). Uniform priors are assumed for all

model parameters except for the annual recruitment and ef-

fort deviates, which have normally distributed priors as

described above. For each sample of the model parameters

from the posterior distribution, we project the population

forward in time sampling a recruitment deviate each year

from the distribution N(0,sR), and iid effort deviates, 3E,g,t,

from the distribution N(0,sE,g). The stock-recruitment rela-

tionship and bias correction factors are used when projecting

recruitment and effort. The 5th and 95th percentiles of these

projections are used to represent the 95% Bayesian credibil-

ity interval of the abundance. More information on Bayesian

analysis relevant to this application can be found in Punt and

Hilborn (1997) and Maunder and Deriso (2003).

Projections from parameter point estimates

First, the parameters of the stock assessment model are es-

timated using penalized maximum likelihood with the addi-

tion of the recruitment deviate and effort deviate penalties.

As mentioned above, this is equivalent to finding the mode

of the joint posterior distribution. Then, the population is

projected forward in time using the MLE parameter values,

and sampling a recruitment deviate each year from the dis-

tribution N(0,sR) and effort deviates from N(0,sE,g). The

stock-recruitment relationship and bias correction factors

are used when projecting recruitment and effort. The for-

ward projection procedure is repeated for a sample

(n¼ 500) of recruitment and effort deviates, each time

keeping model parameters at the MLE values, and the 5th

and 95th percentiles of these projections are used to repre-

sent the 95% projection interval of the abundance.

Simulation analysis

A simulation model is developed using the same population

dynamics model (Equations (3)e(11)) used in the estima-

tion (see Maunder and Deriso, 2003, for the general

approach). The simulation model is run for 35 years (20

for estimation, 15 for projections), based on known effort

(Figure 1), to produce total catch and catch-at-age data us-

ing the parameter values in Tables 1 and 2. Only the first 20

years of catch and catch-at-age data are fitted in the estima-

tion procedures. Catchability is modelled as coming from

a lognormal distribution with a standard deviation on the

log of the catchability of 0.4 and 0.6 for gears 1 and 2, re-

spectively. The total observed catch is normally distributed

around the true catch with a standard deviation of 0.07, and

the catch-at-age data are generated using a multinomial dis-

tribution with sample size of 50 each year.
In all, 500 (200 for the Bayesian analysis) artificial data

sets are generated, and the estimation methods are applied

to these data sets. We investigate three methods: (i) normal

approximation; (ii) Bayesian analysis; and (iii) forward pro-

jections from point estimates. The point-estimate method

only includes uncertainty in the future recruitment and

the future effortefishing mortality relationship. The Bayes-

ian analysis and normal approximation methods also

include uncertainty in parameter estimates.

The normal approximation method is further investigated

by testing two different versions of the recruitment and ef-

fort deviate penalties: (i) including the full penalty for all

years including the future (normal approximation method);

(ii) eliminating ln(sR) from the penalty of the future

0

5

10

15

20

25

30

0 10 20 30
Year

Ef
fo

rt

Gear1 Gear2
Figure 1. Effort time-series used for the two fisheries in the simu-

lation analysis.

Table 2. Age-specific model parameters used in the simulation

study. The values are based on a generic species.

Age

Selectivity

Maturity WeightGear 1 Gear 2

1 0.33 0 0 0.000597

2 0.66 0 0 0.00315

3 1 0.25 1 0.007168

4 0.66 0.5 1 0.011705

5 0.33 0.75 1 0.016082

6 0 1 1 0.019947

7 0 1 1 0.023179

8 0 1 1 0.025786

9 0 1 1 0.027839

10 0 1 1 0.029428

11 0 1 1 0.030643

12 0 1 1 0.031565

13 0 1 1 0.032259

14 0 1 1 0.03278

15 0 1 1 0.03317

16 0 1 1 0.03346

17 0 1 1 0.033676

18 0 1 1 0.033837

19 0 1 1 0.033957

20 0 1 1 0.034046
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the future recruitments and future effort deviates (adjusted

normal approximation method). Dropping ln(sR) from the

penalty of the future recruitments is motivated by the fact

that there is no information in the future to estimate the re-

cruitments, so minimizing the log-likelihood that includes

ln(sR) for these years will cause sR to be estimated at

a lower value. Not using the bias correction factor for the

future recruitments (and effort deviates) is motivated by

the fact that when there is no information to estimate the

recruitments, the recruitment deviate is estimated to be

zero and the bias correction factor will cause the recruit-

ments to be lower than expected by the stock-recruitment

relationship.

We present the percentage of times that the true value

lies within, above, and below the 95% projection interval.

We also present the % bias when future abundance is esti-

mated by the MLE estimates from the normal approxima-

tion method, the average of the projections for the point

estimation method, and the average of the projections for

the Bayesian method.

Application

The stock assessments of yellowfin, bigeye (Thunnus obe-

sus), and skipjack (Katsuwonus pelamis) tuna in the eastern

Pacific Ocean are some of the most computationally inten-

sive and highly parameterized stock assessment models

(Maunder and Watters, 2003). The stock assessment model

has more than 1000 parameters for these applications. His-

torically, forward projections using this model have been

based on parameter point estimates, and only include demo-

graphic uncertainty for recruitment in the future projections.

Therefore, the results ignore parameter uncertainty. Initial

analyses using the normal approximation method have

been presented for bigeye tuna (Maunder and Harley,

2002), but sR was fixed, both ln(sR) and the bias correction

factor were used for the future recruitments, and the normal

approximation method had not been tested. We apply the ad-

justed normal approximation method to the stock assessment

of yellowfin tuna in the eastern Pacific Ocean (see Maunder,

2002, for a description of the assessment, and Maunder and
 

Watters, 2003, for further technical details) and compare it

with the point estimation method. In both models we ignore

future variation in catchability represented by effort deviates.

This is because fishing mortality is not proportional to effort

for some of the fisheries, so the standard deviation for the ef-

fort deviates in these fisheries is fixed at a relatively large

value to remove any biomass information from the catch-

and-effort data. Not including effort deviates in the future

will underestimate uncertainty. This model has 1919 param-

eters and takes 7 h to converge on a 2.8-GHz Pentium 4

desktop computer. The majority of the model parameters

are quarterly recruitment and effort deviates.

Results

Simulations

The coverage of the biomass projection interval for the

point estimation method is very poor in the first few years,

a large number of true biomass points being outside the pro-

jection interval (Table 3). The coverage becomes close to

the desired coverage (95%) as the projection timeframe is

increased, but it is still slightly lower than the desired level.

The normal approximation method has better coverage for

the first few years, but has poorer coverage as the projection

timeframe is increased. The projection intervals are asym-

metrical, with a greater chance of the true value being

above the projection interval. The coverage is greatly im-

proved and close to the desired level if ln(sR) is removed

from the penalty on the recruitment deviations and the

bias correction factors are removed in the projection time

period. However, the projection intervals remain asymmet-

rical in their coverage. The coverage of the Bayesian

method is higher than the desired level, and higher than

that of the other methods. The coverage performance is

symmetrical, with equal numbers of true biomasses above

and below the projection intervals.

The size of the projection intervals is smaller for the nor-

mal approximation method than for the point-based

method, except for the first few years (Table 3). However,

the projection intervals are similar in size for the adjusted

normal approximation method compared with the point-based
2024
Table 3. Estimates of projection interval coverage for the spawning biomass for projections of 2, 5, and 10 years. ‘‘Below’’ means the

proportion of times the true value is less than the lower bound of the projection interval, ‘‘inside’’ the proportion of times the true value

is inside the projection interval, ‘‘above’’ the proportion of times the true value is greater than the upper bound of the projection interval,

and ‘‘size’’ means the size of the projection interval. The required coverage is 95%.

Point Normal Adjusted Bayesian

2 Years 5 Years 10 Years 2 Years 5 Years 10 Years 2 Years 5 Years 10 Years 2 Years 5 Years 10 Years

Below 0.16 0.05 0.04 0.02 0.02 0.02 0 0 0 0.02 0.02 0.02

Inside 0.53 0.94 0.94 0.92 0.84 0.8 0.92 0.95 0.94 0.96 0.97 0.97

Above 0.31 0.02 0.03 0.06 0.14 0.18 0.08 0.05 0.06 0.02 0.02 0.02

Size 48 287 298 131 177 173 129 263 278 135 343 348
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Figure 2. Comparisons of the projection distribution of spawning-stock biomass from the different estimation methods for a single sim-

ulated data set. The dark vertical lines represent the true values.
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method, except for the first few years. The confidence inter-

vals are largest for the Bayesian method. Figure 2 shows

the projection distribution for the different methods for

a single simulated data set, and highlights the difference

in projection uncertainty and the asymmetrical nature of

the Bayesian and point estimation methods.

There is significant negative bias in the estimates by the

normal approximation methods of future spawning biomass

(Figure 3). When the bias correction factors and ln(sR) are

removed, there is a smaller but positive bias in the spawn-

ing biomass (Figure 3). This bias can be attributed to the

stock-recruitment relationship (Figure 3). Bias in estimated

recruitment follows a similar pattern to bias in spawning

biomass (Figure 3), and recruitment does not appear to be

biased when the steepness, h, is set to 1 (recruitment is in-

dependent of stock size) for the adjusted normal approxi-

mation method (Figure 3).

Estimates of sR are negatively biased for all methods ex-

cept the Bayesian (Figure 4). The negative bias is much

greater, and R0 is also negatively biased (Figure 4) if

ln(sR) is included in the recruitment deviate penalty in

the projection period.
Application

The spawning biomass confidence intervals of the adjusted

normal approximation method were much larger in the fu-

ture projections than for the historical period (Figure 5).

The mean of the point-estimate-method projections was es-

sentially identical to the MLE of the fully adjusted normal

approximation method. The confidence interval from the

point-estimate method took about two years to become as

wide as the adjusted normal approximation method. The

lower bound of the confidence interval estimated by the

point-estimate method was not as low as the adjusted nor-

mal approximation method.

Discussion

We introduce a method to perform forward projections that

accounts for both parameter uncertainty and demographic

stochastic uncertainty that is less computationally intensive

than Bayesian and bootstrap methods. The method is a sim-

ple extension of current methods based on penalized likeli-

hood, and it performs reasonably well as long as it is
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Figure 3. Bias in the estimates of spawning-stock biomass (SSB) and recruitment from the four estimation methods (left panels) and using

the adjusted normal approximation method when the model has a BevertoneHolt stock-recruitment relationship (h¼ 0.6), and when re-

cruitment is independent of stock size (h¼ 1) (right panels).
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adjusted to remove potential bias. The estimation routine

minimizes the negative log-likelihood which includes the

term ln(sR). However, for future recruitment, there is no ad-

ditional information to provide estimates of the recruitment

deviation. Therefore, the model parameter estimates should

be the same as those achieved when the model is fitted

without the projection period. This is not the case, because

minimizing the negative log-likelihood with ln(sR) for

these years causes the sR to be estimated lower. This is be-

cause there are additional years where 32
R,t/2s2

R¼ 0 because

there is no information in the data about 3R,t, so that

a smaller value for sR reduces the penalty by reducing

ln(sR). This result highlights a consequence of the approach

commonly used in fisheries to estimate the recruitment
residuals as free parameters. If the model includes years

where there is no or little information, the estimate of sR

would be biased low. This is consistent with the results

of Maunder and Deriso (2003), and methods that integrate

out the recruitment deviations (e.g. Bayesian analysis or

mixed effects) should be better estimators of sR (see

Maunder and Deriso, 2003).

A bias correction factor for the lognormal distribution is

added to the recruitment to keep the expected recruitment

equal to that of the stock-recruitment relationship. This

assumes that all the recruitment deviations from the under-

lying stock-recruitment relationship are iid lognormal.

However, if there is little information in the data about re-

cruitment for certain years, these years will be estimated at
24
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Figure 4. Estimates of sR (left panel) and R0 (right panel) for each simulated data set using the different estimation methods.
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values below the expected value owing to the effect of the

bias correction factor and that the penalty on the recruit-

ment deviates is centred at zero. Therefore, because there

is no information in the future, the maximum likelihood

estimate of recruitment in the future will be biased low if

the bias correction factor is used. This result highlights an

additional consequence of the approach commonly used

in fisheries to estimate the recruitment deviates as free

parameters. If the model includes years where there is no

or little information, the estimate of recruitment will be

biased low for these years. This is particularly important

for the most recent years, for which the catch-at-age data

provide little information and these recruitments are influ-

ential for biomass projections in the near future. Again,

methods that integrate out the recruitment deviations (e.g.

Bayesian analysis or mixed effects) should be better

estimators.

Deterministic projections of a population dynamics model

will underestimate the effect of a stock-recruitment relation-

ship. In a stochastic projection when random recruitment is

lower than that expected from the stock-recruitment rela-

tionship (i.e. a negative annual recruitment deviate), the

spawning biomass will also drop more than expected, caus-

ing the stock-recruitment relationship to make the expected

recruitment lower in following years. The opposite also oc-

curs when the recruitment deviate is positive. However, ow-

ing to the shape of the BevertoneHolt stock-recruitment

curve, this has more impact for lower-than-expected recruit-

ment. Without stochastic recruitment this does not occur, so
the normal approximation method will, if corrected for other

biases, on average overestimate recruitment in future if there

is a BevertoneHolt stock-recruitment relationship.

Maunder and Deriso (2003) found that estimation of sR

was possible when maximizing the penalized likelihood,

but estimability was reduced when the catch-at-age data

were not available for all years. They showed that a local

optimum often occurs close to the true value of sR, but

that a global optimum occurs at zero. Therefore, putting

reasonable bounds on sR and initiating the estimation rou-

tine at a reasonable value for sR, as in this analysis, may

provide reasonable results. If the estimate of sR is at the

lower bound, estimation methods that integrate over the

annual recruitment deviates (e.g. Bayesian analysis or

mixed effects) may be needed (see Maunder and Deriso,

2003). In collaboration with Dave Fournier (Otter

Research) we have shown that the Laplace approximation

(Barndorff-Nielsen and Cox, 1989; as implemented in

ADMB) performs identically to the numerical integration

method of Maunder and Deriso (2003), but is an order

of magnitude faster and may be a promising method to es-

timate sR in these cases. The Laplace approximation

method may also improve the normal approximation

method for projections (note that the adjustments pre-

sented here may not be appropriate if the Laplace approx-

imation is used).

Application to yellowfin tuna highlighted a problem with

the normal approximation method linked to the method used

to include abundance information from catch-and-effort

sjm
s/article/63/6/969/618044 by guest on 20 M

arch 2024
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data. As explained previously, the amount of information

about abundance contained in catch-and-effort data is

controlled by the standard deviation of the penalty on the

effort deviates. However, this standard deviation is also

used to determine variability in catchability in the future.

Therefore, downweighting the information on abundance

contained in the catch-and-effort data by increasing the

standard deviation will increase variability in catchability

in the future. The main reasons to downweight the informa-

tion about abundance contained in the catch-and-effort data

are because catchability changes over time. To overcome

this, catchability could be modelled as a random walk pro-

cess (Hampton and Fournier, 2001; Maunder and Watters,

2003), or the assumption that fishing mortality is propor-

tional to effort could be modified.

Normal approximation requires the confidence intervals

to be symmetrical. In many cases symmetry may not be ap-

propriate (see Figure 2). For example, biomass cannot be

less than zero, and this may contribute to the asymmetry

coverage of the normal approximation methods in this anal-

ysis. However, calculating the confidence intervals on the

natural logarithm of biomass, then using the appropriate

transformation, as done by Hampton and Fournier (2001),

may improve coverage. The approach of including the pro-

jection period in the estimation model can be used in a pro-

file likelihood context to produce asymmetrical confidence

intervals. However, this requires optimizing the objective

function numerous times, which may be impractical be-

cause of computational or time limitations.

The normal approximation and profile likelihood

methods to carry out projections are in the flavour of the

likelihoodist framework (Tanner, 1993; Royall, 1997),

which is an alternative to the Bayesian and frequentist

(e.g. bootstrap) frameworks. However, the method can

also be used in a frequentist framework. The distribution

represented by the normal approximation can be used to ap-

proximate a confidence distribution (Schweder and Hjort,

2002), which in turn can be used as an objective Bayesian

posterior distribution with inferred reference priors and

good coverage properties.

We used the normal approximation method to reduce the

computational demands of performing forward projections

while still allowing for both parameter uncertainty and future

demographic stochasticity. Alternative methods to reduce

computational demands are possible. For example, the pa-

rameter estimates could be sampled from a multivariate nor-

mal distribution based on the delta method, and these can be

used to carry out stochastic forward projections (Patterson

et al., 2001). This method is essentially a Bayesian analysis

that uses a multivariate normal approximation to the poste-

rior distribution, with uniform priors on all parameters.

Methods to reduce computational demand that can be

used with Bayesian analysis or bootstrap procedures are

also available. The stock assessment method used for our

analyses follows the method of Fournier et al. (1998),

allowing for continuous fishing and natural mortality
throughout the year using the Baranov catch equation and

estimating annual effort deviates. An alternative method

to that of implementing the Baranov catch equation is iter-

atively to solve the catch equation within each function

evaluation of the parameter estimation procedure. How-

ever, this method may also be computationally demanding.

The computational demands can be reduced by approximat-

ing continuous fishing and natural mortality, by removing

catch in the middle of the year (Pope’s approximation;

Pope, 1972). This removes the need to estimate the annual

effort deviates, but it also changes the method used to in-

clude the information from catch-and-effort data. Maunder

and Starr (2001) used this method to implement a Bayesian

analysis for a catch-at-age model with several gears. The

reduced computational demands come at the price of possi-

ble bias attributable to the approximation. However, it

should be noted that fishing and natural mortality do not

take place at a constant rate throughout the year, so the

method of Fournier et al. (1998) is also only an approxima-

tion. Also, the normal approximation method for forward

projections using constant catch strategies may not be ap-

propriate, and could produce different parameter estimates

for the historical period. This is due to the population

size getting too small in the projection period for the catch

to be removed, and, depending on the implementation, es-

timated model parameters may have values to compensate

for the small population size.
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