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Disentangling the effects of capture efficiency and population
abundance on catch data using random effects models
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population abundance on catch data using random effects models. e ICES Journal of
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We propose a random effects model for disentangling population abundance and capture
efficiency effects on bottom-trawl catches. The spatial distribution of individual fish is
assumed random leading to a Poisson distribution for the number of individuals in the trawl
path (no schooling). Capture efficiency, i.e. the proportion of individuals in the trawl path
being retained by the gear, is modelled as a random variable. We propose model extensions
that include the effects of body size on haul efficiency. We applied the models to several
species from the Celtic Sea groundfish community based on small-scale repetitive hauls.
The resulting abundance estimates allowed us to study population abundance ratios; the
estimated capture efficiencies were comparable between species and showed that generally
gear efficiency increases for larger species with the exception of haddock (Melanogrammus
aeglefinus), which had low estimated gear efficiency despite its large body size. Model
identifiability was studied using simulations and an independent trawl data set from the
same area.
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Introduction

Abundance of fish stocks is often inferred from catch

information from commercial fisheries or scientific trawl

surveys. Selecting the correct probability distribution of

catches is important for choosing the correct estimator for

survey-derived population abundance indices (Pennington,

1983; Myers and Pepin, 1990; Terceiro, 2003) or the

correct error distribution in a stock assessment model. The

distribution of catch numbers per trawl haul is commonly

characterized by many zeros and some extreme values,

resulting in a rather skewed distribution. This shape is not

unique to trawl catch data and occurs in many studies of

animal distribution. Welsh et al. (1996) summarized the

different model classes that have been employed to deal

with data that feature "extra zeros". In two stage models,

the probability of obtaining a non-zero observation is

modelled separately from the distribution of the number of

animals observed or caught conditional on it being non-

zero. The distribution of non-zero observations might be

truncated Poisson (Terceiro, 2003), truncated negative
1054-3139/$30.00 � 2005 International Cou
binomial (O’Neill and Faddy, 2003), or even gamma

(Stefánsson, 1996). This class of models is known as

conditional models or more commonly in the fisheries

literature as the delta approach (Stefánsson, 1996). The

probability of non-zero catches as well as the mean catch

per haul is then modelled using generalized linear models

with explanatory variables such as area or depth (Stefáns-

son, 1996). A slight modification of this leads to

considering the observations to follow a mixture distribu-

tion of a Poisson or negative binomial distribution and

a Bernoulli draw (finding/observing animals or not) (Welsh

et al., 1996). Applied to catch data, the first component of

this model can be interpreted as the spatial distribution of

fish abundance and the second as the probability of the gear

catching a particular fish.

Two biological processes underlie trawl catches: the

abundance and spatial distribution of fish populations and

capture (trawl) efficiency. The first component determines

the number of fish in the trawl path (swept area) and the

second describes how many of these will end up in the

codend. Capture efficiency is primarily influenced by fish
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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reactions such as herding, escapement, and net selectivity

(see Wardle, 1993; Engås, 1994 for reviews). Traditionally

in stock assessment models, capture efficiency, or more

generally catchability, has been described by a parameter

that might vary among ages or from year to year but which

is generally regarded as constant (e.g. XSA, Shepherd,

1999). Dickson (1993a) proposed a deterministic model for

trawl efficiency that takes account of the effects of sweeps,

otterboards, and the trawlnet. Harley and Myers (2001)

used selectivity curves with the parameters for a particular

species coming from a common distribution. Recently,

Fryer et al. (2003) extended this approach and introduced

the concept of random selectivity curves, which vary

among hauls. Using this idea, we regard haul catchability as

a random process.

In this paper we propose an approach for estimating

population abundance separately from trawl catchability

based on catch numbers per haul. We assume that fish

capture is a random process that causes catchability to vary

from haul to haul. We develop a model for catch numbers

per haul including species catchability as a random effect.

In fisheries science, the concept of random effects is best

known from generalized linear mixed models (Venables

and Dichmont, 2004). The model is tested using a data set

of repetitive bottom-trawl hauls carried out in a single

statistical rectangle within the Celtic Sea taken over a short

time interval. We then deal with the identifiability of such

a model. The crucial question is whether it is actually

possible to disentangle the catch process, and the local

population abundance and estimate all parameters reliably.

Parameter identifiability is addressed using simulations and

an independent data set from the same area but a different

year. Finally, some model extensions are considered that

take into account explanatory variables for both the capture

process and the abundance distribution.

Catch process

Model development (model 1)

We model the distribution of catch data as a mixture of

population abundance and random capture efficiency. If

individual fish were randomly distributed in space,

considering the two-dimensional fish distribution once fish

from a certain water layer were projected onto the sea floor,

then the number of individuals encountered in a given area

would follow a Poisson distribution. Consequently, the

distance between (projected) individuals along a transect

line would be described by an exponential distribution. Few

studies have looked at the spatial distribution of fish at the

scale of a fishing haul. Some information comes from

a study on Greenland halibut: using videos from a system

mounted on the trawl headline, Albert et al. (2003) found

that the distance between individuals followed an ex-

ponential distribution. Data derived from video observations

obtained with an ROV suggest that a number of deep-sea
species are randomly distributed on a small scale (Trenkel,

unpublished data). Hence, it might be reasonable to assume

that demersal and benthic fish species are randomly

distributed in an area with homogeneous substrate and

depth conditions. This assumption implies that individuals

do not form (big) schools, though a few individuals might

occur together without violating the assumption. The effect

of schooling will be further considered in the discussion.

Let us turn now to the capture process which we view as

a random process. For each species, a given fishing haul has

a particular capture efficiency, and all capture efficiencies

are described by a common parametric distribution. Differ-

ences in efficiency among hauls might be due to gear

properties, environmental, or biological factors. If we take

the swept area over a wide enough scale, capture efficiency

can be interpreted as the proportion of animals caught

which takes values between zero and one.

In summary, the model assumptions are that (i) in-

dividual fish are randomly distributed in space (ignoring the

vertical component) and do not form large schools; (ii)

capture efficiency is a random variable in the range (0,1);

(iii) the width of the swept area is the same for all hauls, but

trawled distance can vary. We can now write down this

simple capture model.

For the ith haul, denote by ni the number of individuals

present in the trawl path of which a certain proportion qi
was caught, where iZ 1,., m, and the capture efficiencies

qi are independent random variables. Modelling the number

of individuals in the trawl path by a Poisson distribution,

we have

niwPoissonðlÞ; niZ1;2;. ð1Þ

The capture efficiencies qi are modelled through normally

distributed random variables pi, which a logistic trans-

formation puts into the appropriate range qi˛ð0; 1Þ.

piwN
�
m;s2

�
ð2Þ

qiZexpðpiÞ=ð1CexpðpiÞÞ ð3Þ

The probability density of qi is shown in Figure 1a for

different combinations of the parameters m and s. It is seen
that the two-parameter family of densities is flexible, and

can accommodate the same shapes as the beta-distribution.

This formulation corresponds to a random effects model

for catchability. The resulting model of catch numbers is

CiwPoissonðqilDi=2Þ; iZ1;.m; ð4Þ

where Di is the distance trawled by haul i, such that Di/2 is

a factor for standardizing to the nominal trawl distance of

2 nm in the Celtic Sea study. Figure 1b shows the

probability distributions of Ci corresponding to the random

effects distributions in Figure 1a when lZ 70. Given the
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Figure 1. Illustration of the different distributional shapes that can be accommodated by capture model 1. (a) Probability density of the

capture efficiency q for different parameter values; (b) corresponding probability functions for catch numbers C (lZ 70); (c) comparison

of the two- and three-parameter families of probability densities for two values of m (sZ 2); (d) likelihood ratio between the two- and

three-parameter families as a function of m for different values of s.
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flexibility of the distribution, its shape can resemble that of

a negative binomial distribution.

Parameter estimation

We estimate the three model parameters l, m, s by

maximum likelihood. To this end, we need to calculate the

marginal probability distribution for the catch Ci of haul i:

fðCijl;m;sÞZ
ðN
�N

fPðCijqðpiÞ;lÞfðpi;m;sÞdpi; ð5Þ

where fP is the probability function corresponding to

Equation (4), q(pi) is given by Equation (3), and fðpi;m;sÞ
is the Gaussian probability density distribution. The log-

likelihood function is then given as

lðl;m;sÞZ
Xm
iZ1

logffðCijl;m;sÞg ð6Þ

The likelihood function is maximized using the random

effects module of the software package AD Model Builder

(Fournier, 2005), which uses the Laplace approximation to

evaluate the integral in Equation (5) (Skaug and Fournier,
http://bemata.imr.no/laplace.pdf). AD Model Builder auto-

matically calculates uncertainty estimates based on the

observed Fisher information matrix. It should be noted that

the Laplace approximation provides only an approximation

of the integral (5), which may lead to biased estimates of

parameters in some situations (Breslow and Lin, 1995).

One should therefore always attempt to assess the accuracy

of the Laplace approximation. We carry out a simulation

study to investigate the finite sample properties of the

approximate maximum likelihood estimates.

Model properties

The proposed model has three parameters: l, m, s, and the

only information available for estimating these is the

empirical distribution of Ci, iZ 1, ., m. Depending on

the shape of the distribution, the parameters will be con-

founded to a varying degree, and as an extreme it may be

impossible to estimate all three parameters simultaneously.

What happens then is that the model collapses during the

estimation process to a two-parameter family: l exp(m)/
(1C exp(m))/ a as l/N and m/�N. Here, a is

a single parameter replacing the two parameters l and m.

http://bemata.imr.no/laplace.pdf
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The resulting two-parameter model is a Poissonelognormal

mixture distribution for catches Ci, i.e. a Poisson distribu-

tion where the mean follows a lognormal distribution.

In practical terms, the phenomenon described above

means that the two-parameter family fits the catch numbers

Ci equally well as the three-parameter family. To illustrate

this point we simulate a large data set (1000 realizations of

Ci) and fit both the two-parameter and three-parameter

families by maximum likelihood. Technically speaking, we

obtain the two-parameter family from the three-par family

by fixing m at the very low value of �7. We generate data

for two different parameter settings: mZ�3 and mZ 0. It

is seen from Figure 1c that when m is small (mZ�3) the

two probability distributions lie close to each other, and

hence will yield approximately the same fit to data. For

a given value of m, the closeness of the two- and three-

parameter families depends on the value of s. So, at which
point does the three-parameter family collapse to the two-

parameter family? To investigate this, we plot the likeli-

hood ratio between the two models as a function of m, for
three different values of s (Figure 1d). To eliminate

simulation error we use a large sample size (mZ 1000).

The figure shows that the ‘breakdown point’ (the value of m
below which the likelihood ratio is zero) depends on s.
Let us now consider the case where the model (Equations

1e4) is fitted separately for several species. One of the

model assumptions is that the width of the area swept by

a haul is the same for all hauls but not the trawled distance.

This width is also the same for all species and as

a consequence the values for the capture efficiencies are

directly comparable between species. Similarly, the pop-

ulation abundances can be compared. Of course this is only

the case if model assumptions are true, in particular that

individuals are randomly distributed in space. However,

estimates would not be comparable for two species if one of

them responded to the trawl by herding behaviour, which in

our model would imply a larger swept area (due to

assuming capture efficiency !1) compared with a species

that would disperse or scatter at the approach of the trawl

and for which the implied swept area would be smaller.

Case study

In October 1994, the Mirec study consisting of small scale

bottom trawling was carried out in the Celtic Sea using the

standard survey gear (36/47 GOV) equipped with rubber

bobbins. Within 6 days (daytime only), 31 hauls of 30-min

duration at 4 knots were performed in an area 1( wide and

half a degree high centred on 48( 45#N and 8( 30#W. All

hauls but two were carried out at depths 140e160 m; the

two other hauls were located around 120 m. Overall 25

species were caught, counted, and their length measured.

Nine species were caught in sufficient numbers and in

enough hauls to attempt fitting the capture model (model 1).

Figure 2 shows the distributions of observed numbers per

haul that all have long right hand tails. Empirical dispersion
factors (variance/mean of catch numbers) ranging from 6.2

for megrim (LEPIWHI) to over 3000 for horse mackerel

(TRACTRA) confirmed the strong overdispersion for all

species. The expected distributions (obtained by parametric

bootstrapping from the fitted model 1) are plotted as

continuous lines for all but two species. Based on visual

inspection the model seemed to provide a good description

of the shape of the catch data. The two species for which no

estimates were obtained were red gurnard (CHELCUC) and

megrim (LEPIWHI). The estimation procedure did not

converge for these two species as the estimated values for

the capture efficiency most likely were below the critical

value for which the three-parameter model becomes a two-

parameter model (see section on Model properties), so the

model was not identifiable. For the remaining species

population abundances (l) were estimated with variable

precision (Table 1, model 1); the estimate for haddock

(MELAAEG) was particularly unreliable but also the

smallest value. The ratios of estimated population abun-

dance and mean observed catch (standardized to 2-nm haul

length) varied between around 3.3 for poor cod (TRISMIN)

and 20 for haddock.

The estimates of the mean m of the random capture

variables were all in the range �5.21 to �1.55 (Table 2,

model 1). The smaller the value, the smaller the capture

efficiency q (Equation 3). However, this effect can be

counterbalanced by large variances s, estimates of ln(s)
are given in Table 2. Note that the estimates of ln(s) were
rather imprecise for small values. Haddock had the smallest

average capture efficiency q of 0.05, poor cod the largest of

0.28 (Table 2). The full distributions for the capture

efficiency q are shown in Figure 3. Note how the distributions

for blue whiting (MICMPOU) and poor cod have larger

values for q close to 1 compared with the other species. This

explains the large average capture efficiency for poor cod and

the relatively large value for blue whiting although their

respective distributions had most of the mass close to zero.

In order to check the appropriateness of the normal

distribution for the random effect pi, the histograms of

estimated random effects were plotted (results not shown).

These histograms looked rather symmetric and a comparison

with the assumed normal distributions confirmed this

impression. However, there were two cases, silvery cod

(GADIARG) and haddock, which showed a somewhat heavy

right hand tail. Thus, there might be some factor with respect

to which the estimated random effects exhibit a relationship

and which could explain the non-normal distribution of the

random effects. An obvious candidate would be fish length.

To investigate this further, the estimated random effects were

plotted against the mean length of the species in the catch

(Figure 4). These figures suggested that indeed mean fish

length in the catch might be an important factor in

determining the capture efficiency of a given haul. We will

come back to this later when we consider possible model

extensions but we will first consider the issue of model

validation for this simple model.
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Figure 2. Histograms of numbers per haul, numbers in parenthesis are dispersion indices (var/mean) for the Mirec case study. Continuous

lines are expected histograms obtained by parametric bootstrap from fitted model 1.
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Model validation

Simulation study

We carried out a simulation study in order to assess the

identifiability of our capture model for the Mirec catch data.

The two yardsticks we used were bias and precision of

parameter estimates. The questions are: can we on average
a

get correct estimates for all model parameters for all

species, and are precision estimates provided by AD Model

Builder of the right size?

The estimated parameter values (Tables 1 and 2) and the

model (Equations 1e4) were used in a parametric Monte

Carlo approach to simulate catch data (200 data sets). The

data simulations were carried out separately for all species.
rch 2024
Table 1. Estimates of average population abundance (l) and ratio population abundance/mean catch per haul (l=C) for capture models 1

and 2 (capture efficiency is a function of body length) for the Mirec case study. Standard deviations are in parenthesis.

Code English name Species

Model 1 Model 2

l l=C l

ARGESPH Argentine Argentina sphyraena 655.4 (112.8) 6.0 (1.3) 657.4 (114.2)

GADIARG Silvery cod Gadiculus argenteus 134.1 (21.6) 10.4 (4.1) 133.2 (20.5)

MELAAEG Haddock Melanogrammus aeglefinus 66.5 (109.4) 20.0 (7.6) 67.1 (112.1)

MERLMER Hake Merluccius merluccius 129.7 (56.3) 4.4 (0.7) 125.6 (49.0)

MICMPOU Blue whiting Micromesistius poutassou 4 829.7 (155.4) 4.6 (1.0) 4 884.5 (214.1)

TRACTRA Horse mackerel Trachurus trachurus 5 137.3 (236.7) 13.6 (7.4) 5 170.8 (298.5)

TRISMIN Poor cod Trisopterus minutus 806.2 (35.0) 3.3 (0.5) 808.7 (36.42)
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Table 2. Comparison of estimates of the mean (m), log-transformed standard deviation (log(s)) of the random capture variable and mean

capture efficiencies for capture model 1 and model 2 (population abundance is a function of age) for the Mirec case study. Standard

deviations are in parenthesis.

Code

Model 1 Model 3

m log(s) q m log(s) q

ARGESPH �2.41 (0.41) 0.60 (0.16) 0.17 �2.37 (0.41) 0.57 (0.16) 0.17

GADIARG �5.10 (0.81) 1.20 (0.23) 0.09 �4.29 (0.88) 1.27 (0.24) 0.14

MELAAEG �4.04 (1.68) 0.51 (0.29) 0.05 �4.0 (1.64) 0.51 (0.29) 0.05

MERLMER �1.55 (0.62) 0.08 (0.21) 0.22 �0.45 (0.51) 0.25 (0.23) 0.42

MICMPOU �2.59 (0.52) 1.03 (0.14) 0.22 �1.64 (0.47) 0.91 (0.15) 0.29

TRACTRA �5.21 (0.63) 1.21 (0.16) 0.08 �4.6 (0.62) 1.12 (0.18) 0.10

TRISMIN �2.06 (0.57) 1.11 (0.16) 0.28 �1.97 (0.57) 1.12 (0.16) 0.29
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The capture model was then fitted to each simulated catch

data set. For all three model parameters, true parameter

values lay within the 10 and 90 percentiles of the

distribution of simulated estimates (Figure 5). The average

relative bias over all seven species (mean of estimates from

simulated data minus true value divided by true value) was

1% (range �20 to 40%) for population abundance estimates

(l), 6% (range �9 to 38%) for the mean m of the random

capture variable, and �4% (range �38 to 9%) for its

standard deviation (ln(s)). Thus, the parameter estimates in

Tables 1 and 2 were not likely to be severely biased. In

order to assess whether the estimates of precision of

parameter estimates were correct, we compared the sample

standard deviations of the parameter estimates obtained

from the simulated data with the original standard deviation

estimates from the Mirec data set. The sample standard

deviations for population abundance estimates were larger

than the Mirec values for all species (l: average 226%,
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0
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Capture efficiency

D
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MERLMER
MICMPOU
TRACTRA
TRISMIN

Figure 3. Comparison of the estimated probability density

distributions of capture efficiency (model 1) for different species

for the Mirec case study.
range 26e484%). For the parameters of the random capture

variable, the difference was less striking (m: average 47%,

range �8 to 119%; ln(s): average 6%, range �9 to 48%).

This indicates that the variance of all population abundance

estimates for the Mirec case study might have been

severely underestimated, as would the other two parame-

ters, but to a lesser degree. It seems likely that the quadratic

approximation to the maximized likelihood function used

by AD Model Builder to obtain standard deviations for

parameter estimates was not completely satisfactory for this

model. We will have to bear this in mind when comparing

parameter estimates in the next section.

Test data set

Another way of validating the model estimates and the

appropriateness of the capture model more generally comes

from using an alternative data set. In 1996, an intercali-

bration study was carried out between the old research

vessel ‘‘Thalassa 1’’ and the new one ‘‘Thalassa 2’’ (see

Pelletier, 1998, for a description of the study). One of the

sites selected for this intercalibration study was the same as

for the Mirec study. Thirty parallel hauls were carried out

leading to two data sets: Intercal 1 (‘‘Thalassa 1’’) and

Intercal 2 (‘‘Thalassa 2’’). These data sets provide the

opportunity to compare capture efficiency estimates for two

data sets (Mirec vs. Intercal 1) obtained using exactly the

same gear and the same vessel but coming from different

years (1994 vs. 1996). This leads to the null hypothesis

H0q: q(Mirec)Z q(Intercal 1). It was also possible to

compare abundance estimates for the same time (1996) and

area obtained using the same gear but different vessels

(Intercal 1 vs. Intercal 2). The null hypothesis for this

comparison is H0l: l(Intercal 1)Z l(Intercal 2).
The comparison of model estimates was possible for five

species. For three out of the five species, the shapes of the

distributions of capture efficiency (q in Equation 3) were

nearly identical for all three data sets (figure not shown). For

the other two species, silvery cod and poor cod, the

distributions were more similar for the same year (Intercal



1549A random effects model for disentangling population abundance and capture efficiency effects

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/62/8/1543/789126 by guest o
30 35 40 45

-1

0

1

2

MERLMER

20 25

-2

0

2

MICMPOU

10 20 30

-1

0

1

2

TRACTRA

16 18 20

-1

0

1

TRISMIN

Mean length (cm)

p

14 16 18 20

-2

0

2

ARGESPH

7 9

0

1

2

GADIARG

20 30 40 50

0

1

2

MELAAEG

8
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1 vs. 2) than for different years (Intercal vs. Mirec). The

comparison of model estimates, however, showed that the

values of the mean (m) of the random capture variables were

not significantly different for silvery cod and poor cod due to

low estimation precision (Figure 6). Significant differences

were found for argentine and horse mackerel for which the

shapes of the capture efficiency distributions were similar.

Thus, H0q is rejected for two out of five species.

Comparing the two population abundances estimates (l)
for 1996 (Intercal 1 vs. 2), significant differences were

found for silvery cod and poor cod leading to rejecting H0l
for two out of the five species tested. It might be

hypothesized that the precision of population abundance

estimates was underestimated, which in turn would have

led to significant differences, though there were none in
reality. Although the simulation study found that the

precision of abundance estimates of these two species

was underestimated by 74% and 27%, respectively,

increasing the standard deviations by these amounts still

yields significant differences in population estimates.

Model extensions

Selecting explanatory variables

The catch process model (model 1) can be extended by

including the effects of explanatory variables. An obvious

candidate is body length, which affects net selectivity and

fish reactions directly. If individuals occur together by

length or age, population abundance present in the path of
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a given trawl haul might be "explained" by body length

indirectly. Thus, body length can either be used as an

explanatory variable for the capture efficiency (Equation 2)

or the population abundance (Equation 1).

In order to study the impact of body length on capture

efficiencies, the mean estimated capture efficiency q (model

1) was plotted against the average body length in the catch

(Figure 7a). The relationship was a clearly increasing

function with two exceptions, haddock and horse mackerel.

Both had low average capture efficiency despite having

large average body size.

Capture efficiency as a function of body size
(model 2a and b)

Modelling the mean of the random capture variable as

a linear function of the average body length (li) in haul i,

we get
miZaCbli ð7Þ

piwN
�
mi;s

2
�

ð2aÞ

This means that the capture efficiency qi (Equation 3) is

a logistic function of body length, which corresponds to

a classical selectivity model. The model for population

abundance remained as before (Equation 1). We used

average body length in a haul to represent the length effects

of a given species. Hauls with no observations (zero hauls)

pose a problem, as no mean length is available. The question

is whether this is a case of randomly or non-randomly

missing information. To put it differently, is the fact that no

individuals were observed in a given haul caused by small

local abundance, in which case the information would be

randomly missing, or is it caused by the individuals present

being too small to be retained in the net, which would mean
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non-randomly missing information? It might also be

a mixture of both. But given the rather large body size of

the species in the Mirec study, in most cases zero hauls were

more likely to be due to low local abundance. Support for

this hypothesis comes from the observation that, for all

species, zero hauls were surrounded by small hauls. Thus,

we decided to estimate the covariate for zero hauls by the

mean of the average haul length from all non-zero hauls.

Assuming the same relationship between the capture

variable (species independent b in Equation 7 but separate

intercepts a; referred to as model 2a), we obtained mean

capture efficiencies which decrease with average body

length (Figure 7b). If we assumed however that the

relationships differed (species-specific b in addition to a,

model 2b), we obtained three classes of species (Figure 7c).

Mean capture efficiency clearly increased with body size

for argentine, silvery cod, poor cod, and horse mackerel,

decreased for hake and blue whiting, and remained constant

for haddock. Table 3 summarizes the signs of these
relationships. Thus, the form of the length-specific

selectivity function differed between species.

Population abundance as a function of age
(model 3)

Modelling population abundance as a decreasing function

of age, we obtain

liZd expð�c ageÞ ð8Þ

niwPoissonðliÞ ð1aÞ

This model corresponds to a classical population dynamics

model where c is total mortality and d is average

recruitment. The random effects catchability model re-

mained as in model 1 (Equations 2 and 3). Age can be

estimated from body length assuming a growth function.

Using the inverted von Bertalanffy growth model, we
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estimated mean age in a haul by first estimating the age of

all individuals using growth parameters as in the Appendix

of Trenkel and Rochet (2003). For the species not present in

that study, we derived values from FishBase (http://

www.fishbase.org; GADIARG kZ 0.5, LinfZ 15; MEL-

AAEG kZ 0.2, LinfZ 100).

Estimating separate mortalities c for all species, only two

species (blue whiting and hake) had positive mortalities

(negative slopes in Figure 7d and Table 3). These were the

same species that had decreasing capture efficiencies with

body length (negative slopes formodel 2). Thus, only for blue

whiting andhakewas there evidence that population dynamic

effects might have been more important in determining catch

numbers per haul than gear efficiency effects.

Model comparison

We have now fitted three different capture models to the

Mirec catch data. We used Akaike’s information criteria
(AIC) to compare the goodness-of-fit of the different model

(Table 4). The simple model (model 1) had the smallest

AIC for argentine and haddock, while the model with

capture efficiency as a positive function of length (model 2b)

was best for poor cod. For hake and blue whiting, the model

with abundance as a negative function of age (model 3) had

the smallest AIC. For horse mackerel, both models 2b and 3

had identical fits and were better than the simple model.

The best fitting model for silvery cod was model 3 with

population abundance increasing with age, which does not

make much sense biologically unless older individuals

immigrated into the survey area.

Discussion

The estimated capture efficiencies for all species in the

Mirec study were all rather low, with a mean below 0.3.

Poor cod had the highest estimated mean capture efficiency

http://www.fishbase.org;
http://www.fishbase.org;
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(0.28) followed by blue whiting (0.22) and hake (0.22)

(model 1 in Table 2). In comparison, haddock had a low

mean capture efficiency (0.05) although it is of similar body

size to hake. The estimated standard deviation of the

capture random variable (Table 2) was larger for haddock

than for hake but still only about half the value for the other

species. Both haddock and hake live close to the sea floor

and hence it seems unlikely that a variable vertical

distribution in the water column contributed to the

difference in mean capture efficiency. Thus, the difference

must be either due to differences in the reaction to the trawl

or non-random spatial distributions of one or both species.

The effect of vertical avoidance of haddock in front of the

approaching vessel can be excluded, as all hauls took place

at depths below 100 m, below which only weak and

irregular reactions have been observed for this species (Ona

and Godø, 1990).

Let us first consider the available evidence on capture

efficiency and reaction behaviour. For Barents Sea

haddock, overall capture efficiency of a survey trawl

equipped with bobbins (as used here) was estimated to be

0.05 for individuals !20 cm and to increase to 0.37 for

individuals O50 cm (Dickson, 1993b). Our estimates are

somewhat low compared with these. However, Engås and

Godø (1989) noted that escape of small haddock under the

ground gear depended much on the sweep lengths, with

longer sweeps leading to more escapes. Other gear

parameters also impact capture (Reeves et al., 1992).

Furthermore, Glass and Wardle (1989) found that haddock

reactions increase with increasing light level (artificial

light). Using population estimates derived from catch-at-

age data, Harley and Myers (2001) estimated length

specific survey (IBTS) catchability for North Sea haddock.

Catchabilities were around 0.6 and 0.2 (25-cm individual)

in autumn and winter, respectively. Again, our values for

haddock appear low. Closely linked to reaction behaviour is

maximum fish swimming speed which actually allows

individuals to escape the approaching trawl. A recent

laboratory study found that a 42.0-cm haddock could

maintain a swimming speed of about 0.92 m s�1 for up to

15 min (at 10(C), with larger burst swimming speeds

(Breen et al., 2004). No information is available for hake,

Table 3. Sign of slopes for capture efficiency as a function of body

length (model 2b) and abundance as a function of age (model 3) for

the Mirec case study.

Code Model 2b Model 3

ARGESPH C C

GADIARG C C

MELAAEG 0 C
MERLMER � �
MICMPOU � �
TRACTRA C C

TRISMIN C C
so that it is not possible to establish whether haddock might

be a better swimmer.

We now turn to the second explanation for the estimated

difference in mean capture percentage for haddock and hake.

Given that the survey area was rather small, the substrate

homogenous, and the depth range small, horizontal abun-

dance gradients seem unlikely. Hence, schooling might have

been a factor. Indeed, using videos on the trawl headline,

haddock have been observed to form schools occasionally

(Aglen et al., 1997). This hypothesis is supported by the

observation that estimated horse mackerel capture efficiency

was low given its body size. Horse mackerel is known to

form schools (Massé et al., 1996). Let us now consider the

effects of schooling on our capture model.

If schooling occurs in some species, the proposed capture

model no longer holds for those species. Assuming constant

school size t and a random spatial distribution of schools,

the distribution of the number of individuals in the trawl

path (Equation 1) becomes niw t�Poisson(l), where l is

now the expected number of schools. Note that the variance

of ni under this model is t2l, which is larger than tl, the
variance under the assumption niw Poisson(tl). In con-

trast, the expectations of both models are identical

(E[ni]Z lt). As a consequence, if our (wrong) capture

model (model 1) is fitted, the population abundance (Zlt)
estimated under this model should be an approximately

unbiased estimate of the true population abundance, while

the distribution of the capture efficiency will be inflated by

the extra variance. This situation can be expected to lead to

higher values for capture efficiencies close to one. Indeed

both blue whiting and poor cod show this feature of upward

bending curves on the right hand side, and to a lesser degree

also horse mackerel, but not haddock (Figure 3). Thus, in

this case average capture efficiencies are overestimated and

the median might be a more robust measure for obtaining

interpretable capture efficiencies. Therefore, given that

schooling is expected to lead to an overestimate rather than

an underestimate of the average capture efficiency, the most

convincing explanation for the low haddock estimate is its

capability to avoid capture.

Having established that point estimates of abundance

estimates should be more or less valid even if schooling

occurred, we can now discuss the comparison of our

Table 4. Comparison of model fits (AIC) for the Mirec case study.

The best fitting model is shown in bold.

Code Model 1 Model 2b Model 3

ARGESPH �28 687.60 �28 687.40 �28 687.40

GADIARG �2 236.72 �2 236.66 �2 239.40

MELAAEG �162.80 �160.91 �160.91

MERLMER �4 676.70 �4 681.56 �4 686.12

MICMPOU �433 356.00 �433 366.00 �433 368.00

TRACTRA �154 091.60 �154 093.20 �154 093.20

TRISMIN �74 288.00 �74 290.00 �74 289.60
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population estimates with the average catch numbers.

Given that we do not know the width of the swept area,

we can only compare relative abundances and abundance/

catch ratios between species. These ratios vary between 3

and 20, with most species below X (see Table 1 col. 5).

Thus, if we were to use our model based abundance

estimates instead of the average catch per haul to produce

a survey abundance index, our perception of the community

species composition would be somewhat different. The

species with the highest estimated abundance was horse

mackerel, while blue whiting was most abundant in the

catch. At the other end of the spectrum, haddock was in

both cases the least abundant species, but the order of the

remaining species differed.

The proposed capture model was shown to be identifiable

(simulation study) and to some degree repeatable (test data

set) which means that the two stochastic processes capture

efficiency and population abundance distribution could be

disentangled conditional on all model assumptions being

true. While assuming random capture efficiency might

appear reasonable, the fundamental assumption of a random

spatial fish distribution (Poisson distribution) needs further

verification. One approach would be to use a split-beam

echosounder, track individual fish and then determine their

spatial distribution (Pedersen, 1996). An alternative is to

use videos either fixed on the trawl headline (Albert et al.,

2003) or on underwater vehicles (Trenkel et al., 2004). The

advantage of videos is that species identification is much

easier. Further model extensions are also envisageable by

including additional environmental explanatory variables

or trawl gear parameters. Correlations between species

occurrences could also be included.

In conclusion, the proposed capture model offers

a method for disentangling the effects of species abundance

and catchability on trawl catches. This provides abundance

indices that are comparable between species and that give

true species capture efficiencies. It furthermore allows

comparing capture efficiency for different species.
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