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Acoustic surveys for biomass estimation require accurate identification of echoes from the
target species. In one objective technique for identifying Antarctic krill, the difference
between mean volume-backscattering strength at two frequencies is used, but can
misclassify small krill and other plankton. Here, we investigate ways to improve target
identification by including characteristics of backscattering energy and morphology of
aggregations. To do this, multi-frequency acoustic data were collected concurrently with
target fishing of Antarctic krill and other euphausiid and salp aggregations. Parameter sets
for these known aggregations were collated and used to develop empirical classifications.
Both linear discriminant-function analysis (DFA) and the artificial neural network
technique were employed. In both cases, acoustic-backscattering energy parameters were
most important for discriminating between Antarctic krill and other zooplankton. However,
swarm morphology and other parameters improved the discrimination, particularly between
krill and salps. Our study suggests that for krill-biomass estimates, a simple DFA based
on acoustic-energy parameters is a substantial improvement over current dB-difference
acoustic methods; but studies requiring the discrimination of zooplankton other than krill
must still be supported by target fishing.

� 2003 International Council for the Exploration of the Sea. Published by Elsevier Science Ltd. All rights

reserved.

Keywords: acoustics, artificial neural network, Euphausia superba, krill, linear discriminant
analysis, South Georgia, Southern Ocean, zooplankton.

R. S. Woodd-Walker, and J. L. Watkins: British Antarctic Survey, High Cross, Madingley
Road, Cambridge CB3 OET, UK. A. S. Brierley: Gatty Marine Laboratory, University of
St Andrews, St Andrews, Fife, KY16 8LB, UK. Correspondence to J. L. Watkins; tel: þ44
1223 221605; fax: þ44 1223 221259; e-mail: j.watkins@bas.ac.uk.

Introduction

Acoustic surveys are conducted throughout the Southern

Ocean to determine standing stock estimates of Antarctic

krill (Euphausia superba (Dana)) and to investigate aspects

of the distribution and ecology of the species (e.g. Watkins

et al., 1992; Trathan et al., 1995; Hewitt et al., 2002).

Traditionally, Antarctic krill were distinguished from other

scatterers using a range of subjective methods (e.g.

Kalinowski and Witek, 1985; Murray et al., 1995). Sub-

jective classifications require validation through target-

fishing representative examples of each grouping. However,

target fishing is time-consuming and therefore costly, and

classification may vary between acousticians. With the

advent of multi-frequency echosounders, and developments

in acoustic models, more objective methods have been

developed. Madureira et al. (1993b), for example, used the

difference in mean volume-backscattering strength (Sv) at

two frequencies to differentiate krill from other scatterers.

Krill were identified as having a difference in Sv between

120 and 38 kHz (dSv120–38) of 2–12 dB, whereas larger

organisms tended to have a lower dSv120–38 and smaller

zooplankton a higher dSv120–38. With some modifications,

this method has been widely adopted by the international

community (e.g. Brierley and Watkins, 1996; Brierley et al.,

1997; SC-CAMLR, 2000). However, evidence from both

modelling and empirical studies suggests that dSv120–38 for
small krill may be greater than 12 dB and that other

scatterers may fall within the dSv120–38 2–12 dB range (e.g.

Watkins and Brierley, 2002; Demer, 2003; Ward et al.,

2002).

In an alternative approach to distinguishing between

species, and one that has been applied extensively with re-

gard to schooling fish (Reid, 1999), a single-frequency

echosounder is used to characterize physical features of
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each shoal or school (e.g. Weill et al., 1993; Scalabrin

et al., 1996). Some fish shoals have distinct forms of

aggregation, e.g. cod, capelin, and mackerel (Rose and

Leggett, 1988). Others have distinct distributions within the

water column (e.g. Richards et al., 1991). Barange (1994)

developed a range of acoustic-swarm features to distinguish

between fish and zooplankton swarms. These features fall

into two broad categories: first, morphological character-

istics such as length, height, and area of swarms (see Figure

1 in Haralabous and Georgakarakos, 1996); and, second,

the distribution of acoustic-backscattering energy (ener-

getic parameters) within the swarm (variance, ‘‘rough-

ness’’, and mean acoustic intensity). Lawson et al. (2001)

used these and other swarm criteria to distinguish between

schools of co-occurring fish species.

Most krill biomass is concentrated into near-mono-

specific aggregations or swarms, particularly during the day

(Watkins et al., 1986). Other Antarctic zooplankton also

form monospecific aggregations or layers (e.g. Brierley

et al., 1998). They are thus good candidates for differentia-

tion using swarm-shape characteristics. In this study, we

combine the use of multi-frequency acoustic techniques

with the characterization of swarm morphology to improve

the discrimination between Antarctic krill and co-occurring

Southern Ocean zooplankton, namely salps and another

euphausiid Thysanöessa sp.

Method

The data described here were collected during four cruises

on RRS ‘‘James Clark Ross’’ and during the CCAMLR

2000 synoptic survey on RV ‘‘Atlantida’’, ‘‘Kaiyo Maru’’,

and ‘‘Yuzhmorgeologiya’’ (Hewitt et al., 2002) around the

sub-Antarctic Island of South Georgia and in the Atlantic

sector of the Southern Ocean.

Acoustics

Data were collected using a SIMRAD EK500 echosounder

operating hull-mounted, split-beam 38 and 120 kHz trans-

ducers and a single-beam 200 kHz transducer. The echo-

sounder was configured to ping simultaneously at each

frequency every 2.5 s on all cruises except one where it

pinged once a second, with pulse lengths of 1.0, 1.0, and

0.6ms, respectively. The performance of the echosounder

was monitored at least once every cruise using standard-

target, calibration techniques (Foote et al., 1987). Data

were recorded on a computer using Echolog (SonarData Pty

Ltd 1996–2000) and viewed using Echoview.

Net sampling

Most of the net samples were taken with a multiple-opening

and closing, 8m2, rectangular, midwater trawl (RMT8; Roe

and Shale, 1979) with a 4.5-mm mesh. Some samples were

collected with a five-net, multiple-opening and closing

device, Antarctic multiple plankton sampler (AMPS).

AMPS has a fixed-frame net with a mouth area of 1m2

and a 1.5-mm mesh. The five opening and closing codends,

with 1-mm mesh, are mounted 1.5m behind the mouth of

the net. For RRS ‘‘James Clark Ross’’ cruises, both net

systems were controlled and logged through the conducting

towing cable by a shipboard PC.

Net sample analysis

On retrieval, net samples were either sorted immediately

onboard or were preserved in 4% buffered formalin. Vol-

umes of the total catch and of the dominant component spe-

cies were recorded. Preserved samples were analysed on

return to the UK. Total lengths of 100 Antarctic krill per

sample were measured from the tip of the telson to the front

of the eye (Morris et al., 1988).

Reconstruction of net trajectories

The net trajectory was determined relative to the acoustic

transducers by trigonometry. The ‘‘net depth’’ and ‘‘length-

of-cable-out’’ were used to calculate the distance of the net

Figure 1. dSv120–38 for the different swarm taxa. (a) A histogram of

the distribution. (b) The relationship between the mean length of E.

superba in net catches and dSv120–38 for corresponding swarm. The

dotted lines represent the boundaries of the 2–12 dB range for E.

superba.
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behind the transducers (cf. Zhou et al., 1994). The ship’s

speed was used to convert this distance into a time offset

that, with ‘‘net depth’’, was used to reconstruct the position

of the net relative to the echogram.

Acoustic data processing

Acoustic datawere calibration corrected andedited to remove

erroneous points due to surface noise, bottom integration, or

false-bottom detection. Echosounder data were integrated

over 2.5-s and 1-m intervals to standardize the resolution

between cruises, whilst maintaining as much detail as

possible. TVG-amplified noise was masked out from each

frequency using Echoview (SonarData Pty Ltd 1996–2000).

The 120-kHz echogram was used to identify acoustic

targets and extract the parameters of the aggregations. To

reduce the effects of beam spreading and absorption at

depth, only those targets in the top 100m of the water

column were considered. The ‘‘Schools’’ module in Echo-

view was used to identify swarms and layers using

a background threshold of �80 dB, minimum school-length

of 10m, school-height of 3m, minimum connected length

15m, minimum connected height 3m, and a maximum

horizontal linking-distance of 15m. For each identified

aggregation the mean volume-backscattering strength (Sv),

the distribution of backscatter, and the various shape

descriptors were calculated (Table 1). The Sv of these same

aggregations was calculated from the 38- and 200-kHz

echograms. Aggregation detection and description was

repeated using a lower background threshold (�85 dB) so

that the difference in swarm properties at the two thresholds

could be compared (Lawson et al., 2001).

Finally, acoustically detected aggregations that were

likely to have been sampled with the net were determined

with reference to the corrected net trajectory, and those

with greater than 90% by volume of the dominant species

were assigned to that species.

Statistical analysis

The discrimination currently used to determine krill was

tested for its reliability by calculating dSv120–38 for each of

the swarms, and the proportion between 2 and 12 dB was

calculated for each of the three species identified. This

was used as a baseline to compare with more complex

discrimination functions.

Many of the parameters had highly skewed distributions

and so were log10 transformed (Table 1). The data from all

cruises were standardized to zero mean and unit standard

deviation. Several of the swarm features were highly

correlated. Therefore, to reduce the number of factors,

principle component (PC) analysis was carried out on

groups of factors from the training set: size, shape, dSv,
variation in acoustic energy (Var_en) (Table 1), and

changes in these variables with the detection threshold

(Dsize, DVar_en).

The data set was split into a training set and a testing

set consisting of 80 and 20% of the known swarms,

respectively, with the same proportion of each group

(Antarctic krill, salps, and Thysanöessa) in each data set.

The training set was used to develop empirical discrimi-

nation models.

Initially, linear discriminant-function analyses (DFA)

based on Mahalanobis distances were carried out using

Minitab 13. This was performed on the training set using

cross-validation to improve the generalization capabilities

of the model. We first included all three discriminant

categories (krill, salps, and Thysanöessa sp.) for swarm

parameters related to the backscattering energy (Sv120, PC1

and 2 dSv, PC1 and 2 Var_en). The process was repeated

using only morphological principle component (PC1 and 2

size, PC1 and 2 shape). Next, energetic and morphological

swarm parameters were combined, and additional in-

formation such as swarm depth and day and night

differences were included. Finally, we included the PC

from the change in threshold (DSv120, PC1 DVar_en, PC2
DVar_en, PC1 Dsize, PC2 Dsize). At each stage the

discrimination function was optimized by adding and

removing different parameters to give maximum accuracy

in the discrimination. The final optimized model based on

all parameter types was then tested for its generalization

capabilities using the validation data set.

Table 1. Swarm parameters used in analysis.

PC
category

Energetic
parameters

PC
category

Morphometric
parameters

Additional
information

– Sv mean at
120 kHz dB,
(Sv120)

a

Size Corrected
length
(Lc)

a,b

Depth of
aggregation
(Dm)

a

Var_en Standard
deviation
of acoustic
energy (s.d.)a,b

Size Corrected
height
(Hc)

a,b

Day/night

Var_en Skewness of
acoustic energy
(Skew)a,b

Size Corrected
perimeter
(Pc)

a,b

Var_en Kurtosis
(Kurt)a,b

Size Corrected
area (Ac)

a,b

Var_en Horizontal
roughness
(HR)b,c

Shape Image
compactness
(IC)b,d

Var_en Vertical
roughness
(VR)b,c

Shape Fractal
dimension
(FD)b,c

dSv dSv120–38
e

dSv dSv200–120
e

dSv dSv200–38
e

aSee Lawson et al. (2001) for definitions.
bLog10 transformed.
cSee Barange (1994) and Nero et al. (1990).
dSee Weill et al. (1993).
edSvf1–f 2 is the difference in the mean volume backscatter (Sv) at f1

and f2 kHz.
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The DFA was repeated using salps and krill only because

the distinction between krill and salps was less clear than

with Thysanöessa, and this has been identified as a problem

in previous studies (Demer, 1994, and references therein).

In addition, the limited number of Thysanöessa sp. swarms

may reduce the power of the discriminant analysis.

An analysis using an artificial neural network (ANN) was

also carried out, although Thysanöessa spp. were excluded

from this analysis as there were not enough swarms

sampled. Unlike a discriminant analysis, the ANN does not

have any underlying assumptions of linearity in the data.

The ANN analysis (SAS, version 8, SAS Institute Inc.,

1999–2000) was based on a simple feed-forward network

with one hidden node. With such a small training set

ðn ¼ 166Þ, more nodes were likely to reduce the general-

ization capabilities of the network. The ‘‘training set’’ used

for the linear-discriminant analysis was split into two parts

with 75% used for training the network and 25% for testing

the network. A Levenberg–Marquardt training technique

was used to optimize the network (Hagan and Menhaj,

1994), which was done in the same way as the linear-

discriminant model, taking into account the performance of

the testing as well as the training part of the data set. Once

the model was optimized, it was tested for its generalization

capabilities using the separate validation data set.

Results

Baseline acoustic classification

Over the seven cruises, analysis of the net samples

indicated that 145 swarms were Antarctic krill (E. superba),

59 salps, and 21 the small euphausiid Thysanöessa sp.

Using dSv120–38 values of 2–12 dB as our baseline acoustic

discrimination (Madureira et al., 1993b) to identify krill,

over 75% of net-identified krill swarms were correctly

identified as krill using the acoustic technique. However,

more than 50% of the salp and Thysanöessa sp. aggrega-

tions were incorrectly identified as krill (Table 2, Figure

1a). This baseline acoustic classification improved when

considered in terms of biomass, thus 94.4% of krill biomass

was correctly assigned. However, approximately 85% of

salp and 23% of Thysanöessa biomass were still classified

as krill. Most of the krill misclassifications were juvenile

krill (mean length <30mm, Figure 1b).

Principle component analysis

PC analysis of the groups of standardized parameters shows

that there is high covariance between the variables within

each group, with the first PC accounting for most of

the variation (70–96%), and combined with the second

component over 96% of the variation is accounted for.

Thus, use of the PC has provided a powerful way of

reducing the number of parameters used in the DFA

without reducing the information content.

Separation by linear discriminant-function
analysis

Linear DFA, using acoustic-energetic parameters alone,

provided a good separation of Thysanöessa sp. from krill

(Table 3a). However, salps were frequently misclassified as

krill or Thysanöessa sp. Swarm morphology (shape and

size) criteria were less effective overall in distinguishing the

three species, and particularly for Thysanöessa sp. (Table

3b). However, salps were correctly classified more fre-

quently. Combining energetic and swarm morphology

parameters improved the overall correct classification to

75% of swarms (Table 3c). Salps again were least consis-

tently classified correctly. Including the change in threshold

improved the classification of krill and therefore the overall

results slightly, with the overall classification rate ap-

proaching 80% (biomass 99%) (Table 3d). In this final

model, all groups of parameters are represented, suggesting

that extra types of data contain useful information. Testing

the model on the validation data set showed reason-

able discrimination for krill and Thysanöessa sp. (70 and

100%, respectively), but poor discrimination for salps

(40%), although sample sizes were small for salps and

Thysanöessa sp. (Table 3e).

Repeating the analysis, but discriminating only between

krill and salps, showed that although the discrimination was

improved, similar factors were significant (Table 4). The

test of the final model also showed improved performance

over the equivalent model for three species (Tables 3e and

4b). However, note that the number of salp aggregations in

the validation data set is small and so differences between

these test results may not be significant.

Inspection of the distribution of the aggregations within

the parameter space provides useful information on the

properties of the different species. Thus, in contrast to krill,

both Thysanöessa sp. and salp aggregations generally had

relatively low Sv and a low variation in energy within each

aggregation (high PC1 Var_en; Figure 2a). Thysanöessa

sp. and salp aggregations differed, however, in terms of

shape and dSv. Thus the difference in backscatter at higher

frequencies (dSv120–38 and dSv200–120) is much larger in

Thysanöessa sp. aggregations than in salps (PC1 dSv;
Figure 2a). The change with threshold parameters is close

Table 2. A classification of swarms using the method of Madureira
et al. (1993a) (dSv120–38 2–12 dB for krill) (bold denotes correct
classification).

Krill
(2< x<
12 dB)

Non-krill
(2> x>
12 dB) Total

%
Correct

% Correct
by
mass

Krill 117 28 145 80.6 94.4
Salps 30 29 59 49.2 15.5
Thysanöessa 12 9 21 42.9 76.9

Overall
correct

117 38 226 68.8 79.8
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to 1, suggesting that detection threshold makes little

difference to the swarm attributes (see Figure 2c for

instance).

For salps, there is no single defining characteristic, but

salps do have a high dSv120 (Figure 2c), suggesting that

a reduction in threshold of backscatter reduces the Sv at

120 kHz, i.e. more low-backscatter areas are being in-

cluded. PC1 Var_en is also high. However, in contrast to

Thysanöessa sp., this is associated with a low PC1 dSv
(Figure 2a), and with a high PC2 shape (Figure 2b)

suggesting a high fractal dimension compared with

compactness. Salp swarms also have high PC1 shape for

their size (Figure 2d). Many of the salp swarms which have

been misclassified as krill have low PC1 shape relative to

PC1 size (Figure 2d), and low PC2 shape and PC1 Var_en

(Figure 2b). Large salp aggregations (low PC1size) have

been misclassified as krill when their PC1 Var_en has been

low, i.e. when there is high variability in the backscatter

within the swarm. Such a result suggests that there is

considerable heterogeneity within the large aggregations.

Krill swarms tend to cover a wide range of the parameter

space and have been misclassified when their swarm type is

similar to salps and Thysanöessa sp. However, if the mean

backscatter is examined with size (Figure 2e), it can be seen

that the misclassified krill swarms tend to be low density

(low Sv120) and small or just small. Therefore, the effect on

biomass estimates is relatively low.

Separation using ANN

The ANN was optimized with parameters of mean back-

scatter (Sv120), change in mean backscatter with threshold

(DSv120), first and second PCs of shape, and the first PC

of size. This model performs well for classifying krill,

but less well for salps, particularly on the validation data

set (Table 4). Krill that were misclassified tended to have

high PC2 shape, whereas misclassified salps had low PC2

shape and relatively high Sv120. PC2 shape is low when

image compactness is high relative to fractal dimension.

Comparing Sv120 with log10 (swarm area) (Figure 3) shows

that the krill which were misclassified tended to be low

Table 3. DFA of the training set carried out with cross-validation and optimized from different parameter sets. Bold represents correct
assignment.

True group

% Correct
Krill Salps Thysanöessa Total % Correct by mass

(a) Energetic parameters: PC1 dSv, PC1 Var_en. (optimized from Sv120, PC1 dSv, PC2 dSv, PC1 Var_en, PC2 Var_en)
Krill 82 19 11 112 73.2
Salps 6 27 9 42 64.3
Thysanöessa 0 2 15 17 88.2

Overall correct 72.5

(b) Shape parameters: PC1 size, PC1 shape, PC2 shape (optimized from PC1 size, PC2 size, PC1 shape, PC2 shape)
Krill 59 26 33 118 50.0
Salps 2 37 7 46 80.4
Thysanoessa 7 4 6 17 35.3

Overall correct 56.4

(c) Energetic, morphological, and other parameters: PC1 dSv, PC1 Var_en, PC1 size, PC1 shape, PC2 shape (optimized from
Sv120, PC1 dSv, PC2 dSv, PC1 Var_en, PC2 Var_en, PC1 size, PC2 size, PC1 shape, PC2 shape, day/night, Dm)

Krill 84 17 11 112 75.0
Salps 7 29 6 49 69.0
Thysanöessa 1 1 15 17 88.2

Overall correct 74.9

(d) All classes of parameters including change with threshold: PC1 dB, PC1 Var_en, PC1 shape, PC2 shape, Sv120 mean with
threshold (optimized from: Sv120, PC1 DSv, PC2 dSv, PC1 Var_en, PC2 Var_en, PC1 size, PC2 size, PC1 shape, PC2 shape,
day/night, Dm, change with threshold: DSv120, PC1 DVar_en, PC2 DVar_en, PC1 Dsize, PC2 Dsize)

Krill 89 13 9 111 80.2 99.4
Salps 13 28 6 49 68.3 48.7
Thysanöessa 1 1 15 17 88.2 75.0

Overall correct 78.1 98.8

(e) Testing of the final model (all classes of parameters including change with threshold. Parameters included in the discrimination
PC1 dSv, PC1 Var_en, PC1 shape, PC2 shape, DSv120)

Krill 19 5 3 27 70.3 86.4
Salps 4 4 2 10 40.0 14.3
Thysanöessa 0 0 4 4 100.0 100.0

Overall correct 65.9 83.9
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density and therefore would lead to quite a small effect on

biomass estimates. However, the misclassified salp swarms

were those with high density (Sv120) and large area or

just large area (Figure 3), and so the estimates of salp

abundance would not be accurate. However, because the

salp densities are lower than those of krill, the effect of

including salps within krill would have a minor effect on

the apparent krill density.

Discussion

The classification or identification of pelagic aggregations

by acoustic means alone is a major goal for acousticians

worldwide. Work in the Antarctic has shown that under

ideal conditions it is possible to use multi-frequency

acoustics to identify a number of different species (Brierley

et al., 1998). However, the general utility of such tech-

niques to work under a wide range of conditions rather than

Table 4. The results of ANN discrimination for krill and salps using
all classes of parameters including change with threshold.
Significant parameters: Sv120, PC1 size, PC1 shape, PC2 shape,
Dv120 mean with threshold (from Sv120, PC1 dSv, PC2 dSv, PC1
Var_en, PC2 Var_en, PC1 size, PC2 size, PC1 shape, PC2 shape,
day/night, swarm depth, change with threshold: DSv120, PC1
DVar_en, PC2 DVar_en, PC1 Dsize, PC2 Dsize, PC1 Dshape, PC2
Dshape). In parentheses are the results for DFA of krill and salps
only, derived from the same parameter set (significant parameters:
PC1 dSv, PC1 Var_en, PC1 shape, PC2 shape, DSv120). Bold
represents correct assignment.

True group

Krill Salps Total % Correct
% Correct
by mass

(a) Training set
Krill 110 10 120 91.7 (87.4) 99.9 (97.0)
Salps 12 34 46 73.9 (85.4) 3.4 (29.4)

Overall
correct

86.7 (86.5) 98.4 (96.1)

(b) Validation dataset
Krill 27 2 29 93.1 (80.8) 87.5 (94.9)
Salps 6 6 12 50.0 (60.0) 84.6 (17.3)

Overall
correct

80.4 (75.0) 87.5 (92.5)

Figure 2. Scattergrams of the correct and misclassified swarms

from the final DFA model, including all swarms (testing and

training sets). (a) PC1dSv and PC1 Var_en. (b) PC2 shape and PC1

Var_en. (c) PC1 Var_en and DSv120. (d) PC1 shape and PC1 size.

(e) Sv120 and log area. In the key, the first letter refers to the actual

swarm type and the second to the predicted swarm type. The colour

represents the actual swarm type (Krill red, Salps blue, and

Thysanöessa black) and the shape of the predicted swarm type

(Krill circles, salps square, and Thysanöessa triangles). Filled

symbols are misclassified swarms.

.
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just the specific conditions encountered during a particular

study is yet to be demonstrated.

Comparison of classification techniques

In this study, we have taken a selection of acoustically-

derived parameters and used these in various combinations

to derive more rigorous techniques for identifying or

classifying acoustic targets. Using the simple technique

(dSv120–38 range 2–12 dB) to discriminate Antarctic krill is

reasonably reliable for large krill (length >30mm), but in

the present study approximately 60% of the salp and 50%

of the Thysanöessa sp. swarms sampled were included as

krill. In studies where the dB-difference range has been

extended (e.g. CCAMLR-2000 data; SC-CAMLR, 2000)

even more non-krill zooplankton will be included in the

krill fraction.

Adding additional acoustic parameters to the two-

frequency dB difference provided an improved classifica-

tion. Used alone, the morphometric descriptors provided

only a low level of discrimination. This is in marked

contrast to the level of discrimination obtained in studies on

schooling fish (Scalabrin et al., 1996). However, this may

be a reflection of the irregularity of some of the aggregation

types with the apparent shape and size of swarms perhaps

being very sensitive to the direction and line along which

they were sampled. Aggregation shape and size may vary in

response to time of day or location; for instance, on or off

the continental shelf (Miller et al., 1993; Watkins, 2000)

and the inclusion of such information is likely to improve

classification. Morphometric and acoustic-energy informa-

tion used together did result in improved discrimination

over that of just acoustic energy.

In this study, we have used both linear (DFA) and non-

linear (ANN) techniques to classify the acoustic targets.

The ANN shows similar discrimination abilities to the DFA

(Table 4). However, slightly different parameters were used

in the models. Because of the non-linear nature of the ANN

model, it was possible to use Sv120 in the discrimination

process. Theoretically, this should lead to improved dis-

crimination between krill and salps. However, in our

particular case further improvement in the model may have

been limited because the small number of swarms did not

provide adequate coverage of the parameter space. In

addition, a very simple network had to be used and this

limited the interaction between variables and the non-

linearity that could be encapsulated by the model.

Krill and Thysanöessa appear to be relatively easy to

separate from each other, but salps are not so easy to

distinguish, particularly if only acoustic-energy traits are

used. The distinction between salps and euphausiid spe-

cies is ecologically important because they occupy very

different niches and play different roles in the transfer of

energy within the Southern Ocean ecosystem (Voronina,

1998). Recent modelling and target-strength estimates of

salps (David et al., 2001) have shown that not only is the

size of salps within an aggregation more variable than is

typical for krill but also that scattering may be dominated

by either the dense small nucleus or by the larger diffuse

body, depending on the size of the salp and the ensonifying

frequency. This results in variable target strength and

inconsistent dB differences between frequencies. Salps tend

to be less patchily distributed than krill and form lower

density swarms (Figure 3 and Foxton, 1966). Thus, the

shape and the difference in Sv on the threshold of the

aggregation appear to be important indicators of salps.

Another problem with salps is that at times they are found

within layers that contain high- and low-density regions.

Net sampling indicates that such layers often contain both

krill and salps, but it is difficult to determine the degree of

mixing within the layer. Thus krill and salps may occur

discretely, for instance with krill in the dense regions and

salps in the low-density regions, or may occur as a more

homogeneous mixture within the layer. If layers have areas

of salps separate from areas of krill, net samples may be

dominated by one or the other, and therefore the initial

identification of the layer may be incorrect.

Implications for biomass assessment of krill and
identification of Antarctic zooplankton

We have shown that use of DFA or ANNs on an acoustic-

parameter set that combines energetic and morphometric

values provides the best discrimination. However, it must

be noted that this improved discrimination comes with an

additional analysis cost. While school or swarm recognition

can be automated to some degree, there is still a requirement

to define and extract swarm descriptors. It is therefore

important to ensure the correct balance between analysis

effort and the level of discrimination required. On the basis

of the present work we can make some recommendations

about the level of effort required to achieve adequate

species discrimination for two different objectives. The first

objective is to achieve an adequate discrimination between

Antarctic krill and other zooplankton, such that reason-

able acoustic-biomass assessments of krill may be made.

The second objective is to achieve robust identification of

Figure 3. Scattergrams of the correct and misclassified swarms

from the final ANN model, including all swarms (testing and

training sets). Sv120 vs. log area. In the key, the first letter refers to

the actual swarm type and the second to the predicted swarm type

(see Figure 2).
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major zooplankton groups for studies of pelagic ecology

(Constable et al., 2000).

The results show that in terms of our first objective the

use of a simple discriminant function produces a reasonable

separation and an improvement over the more frequently

used dB-difference technique. One significant advantage of

the DFA is that misclassified krill tend to be from low-

density, small swarms or simply from small swarms per se,

whereas the dB-difference technique excludes swarms of

small krill that may, of course, be high-density aggrega-

tions. The implication for biomass assessments of krill can

be seen clearly; correctly apportioned biomass increases

from 94% to approximately 99%. We therefore suggest

that these relatively simple discrimination techniques

are entirely adequate for estimating krill biomass. Under

limited circumstances, salps could lead potentially to

overestimates of krill biomass where krill biomass is low

and salp biomass is high. It would not, however, lead to

high biomass estimates of krill such as are commonly found

around the Antarctic Peninsula and South Georgia (SC-

CAMLR, 2000).

In contrast, for the second objective aimed at zoo-

plankton ecology, we find that although the discriminant

function and ANN are significant improvements over the

simple dB-difference techniques, there are still large pro-

portions of some of the species, in this case salps, that

are incorrectly classified. In more complex ecosystems,

these problems are likely to be worse and so ecological

studies must depend to a large extent still on the right

balance of acoustic sampling and net sampling to ensure

adequate species identification.
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