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For this side-looking, 200 kHz, split-beam sonar application, echo-envelope length has been
shown to be predictive of fish size. In this study, this relationship is exploited to estimate the
abundance of (large) chinook salmon (Oncorhynchus tshawytscha) in the presence of
(smaller) sockeye salmon (Oncorhynchus nerka). The echo-length to fish-size relationship
is too imprecise to ascertain the species of individual fish in the classic sense. However,
the frequency distribution of echo-length measurements contains information on the rela-
tive abundance of chinook and sockeye salmon. The use of echo-length measurements in
a mixture model is explored in order to estimate the proportion of total fish passage that
comprised chinook salmon. Inputs to the model include empirical estimates of the length–
frequency distribution for each species, parameter estimates from the regression rela-
tionship of echo-length to fish-length, and echo-length measurements from individual,
ensonified fish. Outputs are estimates of the proportions of chinook and sockeye salmon in
the river. The advantages of the mixture-model approach over threshold-based discrimin-
ation are discussed. Conditional maximum likelihood and Bayesian versions of the model
are described. The method can be generalized to other hydroacoustic measurements,
including target strength and other discrimination problems.
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Introduction

Attempts to identify species of fish with hydroacoustic data

have met with limited success, and often the success has

been achieved only with expensive hardware or under

restrictive circumstances (Horne, 2000). In particular,

narrow-band measurements on individual fish have been

rarely used to identify species, and then only in concert

with other school-based descriptors and when the species

present were vastly different in size or anatomy (Rose and

Leggett, 1988; Vray et al., 1990).

Part of the difficulty is that measurements of target

strength (TS) can be extremely variable or biased. This

is particularly true for side-looking, shallow-water, sonar

applications, which are subject to boundary effects (Mulli-

gan, 2000), low signal-to-noise ratios (Kieser et al., 2000),

variable side aspects of fish (Kubecka, 1994), and point-

source violations (Dawson et al., 2000). In a companion

study (Burwen et al., 2003), an alternative class of size

discriminators is proposed based on echo-envelope length

and range measurements, which rely primarily on character-

ization of the acoustic signal through time. For side-looking

applications, time-based measurements are robust to some

of the factors (e.g. fish aspect, point-source violations) that

introduce extreme variability to the measurements of peak

amplitude. They may, therefore, predict fish size better than

TS in some circumstances.

An additional difficulty is that the species of interest may

differ only modestly in size. This results in hydroacoustic

measurements that overlap, making discrimination difficult

with a threshold-based approach. In this article, statistical

techniques are described that involve ‘‘mixture models’’

that are especially useful for estimating species composi-

tion when the discriminating variable is imprecise or dis-

tributions overlap. By modelling the frequency distributions

of hydroacoustic measurements as mixtures of distributions
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due to two ormore component species, many of the problems

associated with conventional threshold-based discrimination

can be avoided.

Echo-envelope length measurements from chinook (On-

corhynchus tshawytscha) and sockeye salmon (Oncorhyn-

chus nerka) in the Kenai River in Alaska, which overlap

in size, are used to demonstrate the method. Two methods

of estimation are described: a conditional maximum-

likelihood (CML) algorithm that can be implemented in a

spreadsheet to produce point estimates of species compo-

sition; and a more powerful Bayesian version implemented

in WinBUGS (Gilks et al., 1994), which produces realistic

estimates of uncertainty and has the ability to incorpo-

rate auxiliary information on the model parameters. It is

proposed that the techniques described in this study may be

applicable, with adaptation, to other species-discrimination

problems, including those based on dorsal aspect, TS

measurements.

Methods

Hydroacoustic data were collected during the period May–

June 2001 and 2002 at an established sonar installation on

the Kenai River, Alaska (Miller and Burwen, 2002). An

HTI Model 244 split-beam echosounder operating at

200 kHz, and a 2.9 by 10� elliptical-beam transducer with

a near-field range of 3.1m were used. Pulses were 0.2ms

long and transmitted at a rate of 11–16 s�1. Echoes were

rejected if they did not meet a minimum voltage threshold,

equivalent to �35 dB on-axis target.

Echo-length standard deviation (ELSD) was found to be

a good discriminator of sockeye and chinook salmon for

our application (Burwen and Fleischman, 1998; Burwen

et al., 2003):

ELSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1
ðw

j
� �wwÞ2

m�1

s
ð1Þ

where m was the number of echoes and wj was the length

of the j’th echo measured in 48 kHz sample units at �12 dB

or higher, depending on peak-echo amplitude. If the peak

amplitude was [12 dB above the voltage threshold, then

echo-length was measured at 12 dB below peak amplitude.

If peak amplitude was 6–12 dB above the threshold, echo-

length was measured at the threshold. If peak amplitude

was\6 dB above threshold, wj was not defined.

Recent unpublished work indicates that targets located

far from the acoustic axis may suffer a slight negative bias

in ELSD. Therefore, only the fish less than 3 dB off-axis

were used in the mixture-model analyses reported in this

article. These fish comprised 47 and 63% of all fish in the

2001 and 2002 datasets, respectively.

Mixture model

The probability density function (pdf) of hydroacoustic

variable y (= ELSD) was modelled as a weighted mixture of

two component distributions arising from sockeye and

chinook salmon (Figure 1),

fðyÞ ¼ p
S
f SðyÞ þ p

C
fCðyÞ ð2Þ

where fS(y) and fC(y) are the pdfs of the sockeye and

chinook distributions, and the weights pS and pC are

the proportions of sockeye and chinook salmon in the

population.

Individual observations of y were modelled as normal

random variates whose mean was a linear function of fish

length, x:

yi¼ b0 þ b1xi þ czi þ ei ð3Þ
where zi ¼ 1 if fish i was a sockeye salmon, or 0 if it was

chinook, c was the difference in y between sockeye and

chinook, and ei was normally distributed with mean 0 and

variance r2.

Thus the component distributions fS(y) and fC(y) were

functions of the length distributions fS(x) and fC(x) and the

linear-model parameters b0, b1, c, and r2 (Figure 1). The

species proportions pS and pC were the parameters of

interest, and two methods were used to estimate them. CML

method provided reasonable point estimates and the means

to evaluate model fit. A Bayesian method provided estimates

of uncertainty and the ability to incorporate auxiliary infor-

mation. Modelling of fS(x), fC(x), b0, b1, and c differed

depending on the method of estimation.

CML estimates of species composition

The first method, which can be implemented in a spread-

sheet, finds the maximum-likelihood estimate of pC (and,

therefore, pS ¼ 1� pC) conditional on the regression

parameters. Species-specific length distributions fS(x) and

fC(x) were modelled non-parametrically by re-sampling

from observed length data. In this case, length measure-

ments were obtained from a gillnetting project conducted

immediately downstream of the sonar site. Length data

were paired with hydroacoustic data from the same time

periods. In this study, no gillnet size selectivity within

species is assumed. Estimates of the regression parameters

b0, b1, c, and r2 were obtained from tethered-fish experi-

ments (Burwen et al., 2003), and were considered fixed.

The method proceeded as follows.

For each of the two species, sockeye and chinook,

K ¼ 500 observations {xsk*} were re-sampled with replace-

ment from observed length measurements, where s indexes

species (S, sockeye, C, chinook), k indexes sample, and the

asterisk (*) denotes re-sampled data. Re-sampled length

observations were used to simulate K observations of

hydroacoustic variable y for each species:

y0sk¼ b0þb1xsk*þ gzkþek ð4Þ

where prime (9) denotes simulated data; ek was normally

distributed with mean 0 and variance s2; and b0, b1, g, and

s2 were estimates of regression parameters b0, b1, c, and r
2,

respectively.
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Simulated data {ysk9 } were rounded or binned into L ¼ 20

or more equal-width categories with midpoints {wl}. The

species-specific frequency distributions of y, fS(y) and

fC(y), could thus be approximated by the following discrete

distributions:

Prðy 2 ‘ j z ¼ 1Þ ¼ n
S‘=K ð5Þ

Prðy 2 ‘ j z ¼ 0Þ ¼ n
C‘=K ð6Þ

where nS‘ and nC‘ were the numbers of simulated obser-

vations y9Sk and y9Ck belonging to category ‘.
For the proposed chinook proportion pC ¼ pC, the dis-

crete version of the likelihood, f(y), was obtained by sub-

stituting Equations (5) and (6) into Equation (2):

Prðy 2 ‘ j pC¼ pCÞ ¼ ð1� pCÞ
nS‘

K
þ pC

nC‘

K
: ð7Þ

Using Equation (7), the probability of each observed

value of y, given pC ¼ pC, was calculated and its logarithm

was taken. Log likelihoods were summed across all ob-

served {y}. The value of pC that maximized the log

likelihood was the CML estimate of pC.

Bayesian estimates

There are several sources of uncertainty in the mixture-

model estimates of species composition previously de-

scribed. These include sampling error from estimating:

(1) fish-length distributions from the netting data; (2) the

distribution of the hydroacoustic variable y from the sonar

data; and (3) the vector of regression parameters (slope,

intercept, species effect, and error variance) from the

tethered-fish experiments. There is also potential for bias

when regression parameters estimated from tethered fish

are applied to free-swimming fish. Although estimates from

the CML method could be bootstrapped to provide ap-

proximate standard errors, a Bayesian version of the mix-

ture model was implemented instead. Bayesian methods

are particularly well suited for assessing uncertainty in

complex or unconventional estimators. They also provide a

formal way to incorporate auxiliary information on the

parameters of the model. The Bayesian mixture model was

implemented in WinBUGS (Bayes Using Gibbs Sampler

(BUGS); Gilks et al., 1994), available free from http://

www.mrc-su.cam.ac.uk/bugs/Welcome.html. For examples

of fisheries applications of WinBUGS, see Meyer and

Figure 1. A flow chart of the mixture model described in the text. The frequency distribution of ELSD (panel g) is modelled as a weighted

mixture of species-specific ELSD distributions (b, e), which in turn are the products of species-specific size distributions (a, d) and the

relationship between ELSD and fish length (c). The weights (species proportions, panel f ) are the parameters of interest. þ, sockeye; �,

chinook. Checkered pattern, sockeye; cross-hatched, chinook. Units for ELSD are 48 kHz digital sampling units (su).
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Millar (1999), Millar and Meyer (2000), and Harley and

Myers (2001).

Sockeye and chinook salmon return from the sea to

spawn at several discrete ages. For the Bayesian version,

the species-specific length distributions were modelled as

three-component normal age mixtures.

f SðxÞ ¼ h
S1
f S1ðxÞ þ h

S2
f S2ðxÞ þ h

S3
f S3ðxÞ ð8Þ

fCðxÞ ¼ h
C1
fC1ðxÞ þ h

C2
fC2ðxÞ þ h

C3
fC3ðxÞ ð9Þ

where hCa and hCa are the proportions of chinook and

sockeye salmon in age component a,

f SaðxÞ � Nðl
Sa
; s2

Sa
Þ; ð10Þ

and

fCaðxÞ � Nðl
Ca
; s2

Ca
Þ: ð11Þ

This is convenient because estimates of the length means

{l}, the variances {s2}, and even the age proportions {h}
are available from other fisheries-research projects. The

overall design was therefore a mixture of (transformed)

mixtures. Thus, the observed hydroacoustic data were

modelled as a two-component mixture of y, each component

of which was transformed from a three-component normal

mixture of x. In this case, the subcomponents corresponded

to ages, but such a design could also be used as a purely

synthetic way to approximate skewed or multimodal length

distributions in other applications.

Three linear model parameters were regarded as unknown

in the model: the intercept parameter, b0; the difference

between sockeye and chinook salmon, c; and the slope, b1.
For the analyses presented in this article, the error variance

around the regression was regarded as fixed ðr2 ¼ 0:432Þ.
Species proportions pS and pC were assigned an unin-

formative Dirichlet(1,1) prior. Likewise, age proportions

{hSa} and {hCa} were assigned Dirichlet(1,1,1) priors. In-

formative normal priors, based on auxiliary data available

from other research projects, were used for the length-at-

age parameters.

Based on the results of tethered-fish experiments,

informative normal priors were also used for regression

parameters in the Bayesian mixture model. Linear stat-

istical models of tethered-fish data reported by Burwen

et al. (2003) provided estimates of the regression param-

eters b0, b1, and c to construct reasonable prior distribu-

tions (Table 1).

WinBUGS uses Markov-chain, Monte Carlo methods to

sample from the joint posterior distribution of all unknown

quantities in the model. Two over-dispersed Markov chains

were started for each run and Gelman–Rubin statistics were

monitored to assess convergence. Some models exhibited

slow mixing and extreme autocorrelation. Therefore, rela-

tively long ‘‘burn-ins’’ of 10 000 or more samples were

used. Samples were thinned 10 to 1 thereafter, and at least

10 000 samples per chain were retained.

Results and discussion

Conventional two-class, univariate discrimination involves

assigning individuals to one class or another depending on

whether or not the value of the discriminating variable

exceeds a threshold. When distributions overlap, threshold-

based discrimination is subject to bias that becomes worse

for species proportions near 0 and 1 (Figure 2). Further-

more, the results are sensitive to fish-size distributions. For

instance, in the example illustrated in Figure 2, the number

of chinook salmon misclassified as sockeye (number with

ELSD\2:7) depends largely on the relative abundance of

small chinook, which can change over time. In fact, use of

such a threshold by itself does not discriminate chinook

from sockeye, but rather large chinook from sockeye and

small chinook.

Because the mixture-model approach incorporates in-

formation on fish-size distributions, and because it explicitly

models the expected variability in hydroacoustic measure-

ments, it is not subject to the above pitfalls. There is no bias

against extreme proportions, and the estimates are germane

to the entire population of chinook salmon, not just those

chinook larger than sockeye. Finally, provided length and

hydroacoustic measurements are paired in time, mixture-

model estimates of species proportions are unbiased in the

presence of temporal changes in fish-size distribution.

CML estimates were generated for 9 weeks of 200 kHz

side-looking data collected at the Kenai River in 2001

(Figure 3, 6 weeks shown). In addition, 3 weeks of data

from May–June 2002 were analysed with WinBUGS

Table 1. Summary statistics of prior and marginal posterior
distributions of several parameters estimated from a Bayesian,
mixture-model analysis of 3 weeks of Kenai River sonar and
netting data, 2002.

Mean s.d. 2.5% Median 97.5%

Normal priors
b0 2.88 0.18
b1 0.0319 0.0029
c �0.33 0.11

Week 1 posteriors: 32 fish netted, 89 hydroacoustic targets
b0 2.84 0.10 2.65 2.85 3.03
b1 0.0338 0.0027 0.0288 0.0337 0.0392
c �0.36 0.09 �0.54 �0.36 �0.18
pC 0.542 0.083 0.392 0.537 0.719

Week 2 posteriors: 47 fish netted, 88 hydroacoustic targets
b0 2.81 0.10 2.61 2.81 3.01
b1 0.0330 0.0027 0.0280 0.0330 0.0386
c �0.38 0.09 �0.56 �0.38 �0.19
pC 0.518 0.102 0.334 0.512 0.735

Week 3 posteriors: 52 fish netted, 576 hydroacoustic targets
b0 2.81 0.09 2.64 2.81 2.99
b1 0.0356 0.0026 0.0308 0.0355 0.0408
c �0.30 0.09 �0.47 �0.30 �0.12
pC 0.244 0.043 0.165 0.242 0.334
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(Figure 4). Summary statistics from the marginal posterior

distributions of several parameters are given in Table 1.

The CML method estimates species composition stem-

ming from fixed values of the regression parameters. The

parameter values successfully explained the observed

ELSD distributions during the first 5 weeks, yielding esti-

mates of chinook relative abundance ranging from 24 to

60%. However, in week 6, it was impossible to obtain a

good fit with those same parameters (Figure 3f).

This discrepancy could be explained by a change in the

relationship between fish size and ELSD. For example, a

0.3 unit increase in the intercept parameter b0 was sufficient

to provide a reasonable fit for the following 4 weeks.

Unfortunately, the estimate of chinook proportion can be

sensitive to such shifts in regression parameters. Burwen

et al. (2003) noted that tethered-fish regression parameters

(particularly b0 and c) often differed between experiments

conducted in different years.

Posterior distributions of regression parameters shifted

only slightly between the 3 weeks of 2002 data analysed

(Figure 4, Table 1). We are encouraged that the Bayesian

model appeared to effectively respond to small changes in

the relationship between ELSD and fish size. Model fit

appeared to be good with parameters set to the posterior

means (Figure 4).

Figure 2. Threshold-based discrimination is subject to bias with

imprecise discriminators. Solid lines are simulated frequency dis-

tributions of ELSD arising from component distributions due to

sockeye salmon (dotted lines, left) and chinook salmon (dotted

lines, right). (a) If the true species composition is 50% sockeye/

50% chinook, and a threshold criterion of 2.7 is used (vertical line),

the estimated species composition will be 60%/40%. (b) If the true

species composition is 20%/80%, the estimated species composi-

tion will be 38%/62%.

Figure 3. Observed (black) and fitted (grey) frequency distributions of ELSD from the first 6 weeks of the 2001 season at the Kenai River

chinook-salmon sonar. Dotted lines are the component distributions from sockeye (left) and chinook salmon (right). The estimated

proportion of chinook salmon is listed in the header of each panel. All fits were produced using the CML method, with the same set of

ELSD–length regression parameters. The model fit is good until week 6 (f ), when the mode of the observed distribution is midway

between the two component modes.
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One of the key advantages of Bayesian analysis is the

ability to incorporate auxiliary information in the form of

prior distributions, thereby reducing the breadth of posterior

distributions (i.e. improving the precision of estimates).

Informative priors for regression parameters and mean

length-at-age have been used in this analysis, but there

remain other opportunities for exploiting this capability. An

obvious example derives from use of the netting data. The

species composition of the net catches contains informa-

tion on pC and pS. Such information could be translated

into an informative prior distribution for those parameters,

thereby synthesizing species-composition estimates from

Figure 4. Mixture-model output from 3 weeks of hydroacoustic and netting data from the Kenai River, 16 May to 5 June 2002. On the left

are frequency distributions of observed (black), fitted (green), sockeye (red), and chinook (blue) ELSD measurements. On the right are the

posterior distributions of the proportion of chinook salmon (p) and the linear model parameters b0, b1, and c. Informative prior distributions

for b0, b1, and c are shown in grey. Posterior means of linear model parameters were used to generate the fitted distributions. The summary

statistics are given in Table 1.
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hydroacoustic and netting sources into one. Parameter

estimates can also be updated recursively as more data

become available. Thus, posterior distributions from one

data set are employed as prior distributions for the next.

Such a strategy could be employed with parameters that are

constant or change slowly over time. For the model used in

this study, candidates include the regression slope b1, the
species difference c, or the age proportions h.
In summary, for this particular application, mixture

models of the frequency distribution of ELSD have been

found to provide far better estimates of species composition

than those using a TS threshold. Further improvement

requires a better understanding of the factors that influence

echo-envelope characteristics. The present studies suggest

that these factors may include fish-packing density (number

m�3), fish behaviour, and signal-to-noise ratio. Their

influence on the estimates of species composition reported

in this article are currently being investigated.

More generally, we suspect that the modelling approach

described in this article may prove useful for other hy-

droacoustic applications and other discriminating vari-

ables, e.g. dorsal-aspect TS studies. Explicit consideration

of fish-size distributions and the variability of hydro-

acoustic measurements allow the extraction of maximal

information from the data. Fish-size information is often

available from auxiliary sources, although gear selectivity

may need to be considered. Estimates from such an ap-

proach avoid many of the problems associated with the use

of thresholds for species classification. Even when the

approach does not appear to work, e.g. the poor fit in Figure

3f, there is great value in being alerted to a situation that

probably would have gone unnoticed had a simple thresh-

old been employed. Modelling the frequency distribution

provides much more information and insight than would

otherwise be available. The Bayesian version, in particular,

provides a very powerful and intuitively satisfying way to

synthesize information from multiple sources.

The key requirement for successful estimation with

mixture models is that the composite distribution shows

recognizable modes for at least a subset of the data. Clearly

defined modes may even remove the need for empirical

estimates of the relationship between the hydroacoustic

measurement and fish size, i.e. it may be possible to

estimate the regression parameters indirectly without

tethered-fish or similar experiments. Other adaptations of

this approach are possible. For example, it could be

extended to utilize multivariate data, or to discriminate

between more than two species.
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